Литмир - Электронная Библиотека

Но Файгенбаум прекрасно понимал, к чему привели его вычисления, поскольку геометрическая сходимость указывала на присутствие в уравнении чего-то масштабного, а Митчелл в полной мере сознавал существенность масштаба, от которого, по сути, зависела вся теория перенормировки. В явно неуправляемой системе масштабность свидетельствовала о том, что определенное качество сохраняется, в то время как все остальные претерпевают изменения. Итак, где-то в изучаемом уравнения пряталась упорядоченность. Но где именно? Куда идти дальше, сказать было сложно.

Лето быстро сменяется осенью, которая сильно чувствуется в разреженном воздухе Лос-Аламоса. Уже подходил к концу октябрь, когда Файгенбауму пришла в голову странная мысль. Он знал, что Метрополис, Пол Стейн и Майрон Стейн, рассматривая описанное выше уравнение и другие, выяснили, что определенное поведение повторяется при переходе от одного типа функции к другому. Обнаруживались те же сочетания знаков «П» и «Л», причем в том же порядке. Одна из исследованных ранее функций включала синус, из-за чего тщательно разработанный Файгенбаумом подход к изучению параболы оказался неподходящим. Ему пришлось начать заново; вновь используя свой НР-65, он начал рассчитывать удвоения периодов для функции x t+1= rsin π х t. Расчет тригонометрической функции значительно замедлял вычислительную процедуру, и Файгенбауму пришла мысль использовать сокращенный вариант уравнения. И вновь, задав наибольшую возможную точность, он получил результат с тремя цифрами после запятой: 4,669.

То же число! Невероятно, но данная тригонометрическая функция не просто обнаруживала последовательную геометрическую регулярность. Наблюдаемый эффект оказался численно идентичнымупорядоченности гораздо более простой функции! Ни математика, ни физика не объясняли, каким образом два столь различных по форме уравнения приводили к одинаковому результату.

Файгенбаум связался с Полом Стейном, но тот не поверил в подобное совпадение, посчитав доказательства недостаточными, — в конце концов, точность калькулятора оставляла желать лучшего. Несмотря на это Файгенбаум позвонил своим родителям в Нью-Джерси и сообщил, что столкнулся в своих исследованиях с весьма глубоким вопросом. Этот вопрос, объявил он матери, скоро сделает его, Файгенбаума, знаменитым. Затем он приступил к изучению других функций — всех, которые, по его мнению, также проходили через последовательность разветвлений на пути к хаосу. Вычисления давали неизменно тот же итог — 4,669.

Файгенбаум имел дело с цифрами всю свою жизнь. Еще подростком он научился рассчитывать логарифмы и значения синусов, которые все остальные искали в таблицах. Вместе с тем он даже не представлял, как использовать в исследованиях иное счетное устройство, кроме ручного калькулятора. Митчелл относился к тем многочисленным физикам и математикам, которые презирали свойственное компьютеру механистическое мышление. И вот час компьютера пробил! Файгенбаум обратился к коллеге с просьбой научить его программированию на Фортране и уже к вечеру для каждой из множества взятых им функций подсчитал свою постоянную с точностью до пяти цифр после запятой — 4,66920. Проштудировав ночью правила вычислений с двойной точностью, Файгенбаум на следующий день получил значение 4,6692016090. Этого было достаточно, чтобы убедить Стейна, но самого Митчелла все еще одолевали сомнения. Он намеревался искать упорядоченность — квинтэссенцию математики. Однако, приступая к делу, ученый уже знал, что некоторым типам уравнений, как и отдельным физическим системам, присущи особые свойства. Конечно, уравнения были довольно простыми — квадратичные и тригонометрические, функционально разные, но вполне тривиальные с математической точки зрения. И все же содержалось в них нечто такое, что из раза в раз рождало одно-единственное число. Что это, гадал Файгенбаум, игра случая — шутка мироздания или новый закон природы?

Представьте себе такую ситуацию: доисторический мыслитель обнаружил, что некоторые объекты тяжелее всех остальных и обладают неким абстрактным качеством, которое он назвал весом. Конечно же, сию мысль необходимо научно обосновать. Наш экспериментатор на самом деле никогда еще не измерял вес, но вроде бы кое-что ему понятно. Он смотрит на огромных змей и крошечных змеек, на больших медведей и маленьких медвежат и догадывается, что размер животного, должно быть, связан каким-то образом с его весом. Построив весы, он начинает взвешивать змей. К его удивлению, все змеи весят одинаково. С медведями та же история, но что удивительнее всего — косолапые весят столько же, сколько змеи — 4,6692016090! Ясно одно: весявляется вовсе не тем, что полагал пытливый ум. Вся идея требует переосмысления.

Струящиеся ручьи, качающиеся маятники, электронные осцилляторы и множество других физических систем испытывают переход на пути к хаосу. Хотя такие переходы весьма сложны для анализа, механизмы функционирования систем довольно хорошо изучены. Физики знают уравнения, которые описывают эти системы, но перебросить мост от уравнений различного вида к глобальному долгосрочному поведению объектов не удается. Открытие Файгенбаума подсказывало, что дело не в уравнениях: с появлением порядка вид уравнения терял свою значимость, и независимо от него результат получался один и тот же. «Традиция физики такова, что мы обособляем и детализируем механизмы явления, а затем исследуем их по отдельности, — пояснял Файгенбаум. — В данном же случае мы знаем верные уравнения, но они нам не помогут. Суммировав все микроскопические фрагменты, мы выясним, что не можем распространить их на длительный период, потому что не они важны в интересующей нас проблеме. И это коренным образом меняет смысл выражения знать что-либо».

И хотя связь между вычислениями и физикой казалась весьма проблематичной, Файгенбаум понял, что должен искать новый способ расчетов сложных нелинейных проблем. До сих пор он занимался перебором различных функций, пытаясь подыскать среди них подходящую для моделирования систем. Открытие некой всеобщности означало, что избранный путь ведет в никуда. Регулярность никоим образом не касалась синусов, не имела ничего общего с параболами или с другими отдельно взятыми функциями. Почему? Это был шок! Природа, на мгновение отдернув занавес, позволила нам украдкой взглянуть на неожиданную упорядоченность. Но что еще пряталось за покровом тайны?

Озарение явилось Файгенбауму в образе двух небольших волнистых форм и еще одной, покрупнее. И ничего больше. Лишь яркое и четкое изображение, словно врезавшееся в сознание. Верхушка айсберга, отголосок мыслительных процессов, происходивших где-то на уровне подсознания; он был связан с масштабированием и указывал верный путь.

Файгенбаум изучал аттракторы. Устойчивое равновесие, о котором говорили его графики, являлось фиксированной точкой, притягивавшей, в свою очередь, другие. Не имело значения, какова начальная «популяция», — она все равно неуклонно приближалась к аттрактору. Затем, с первым раздвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Первоначально две эти точки находились совсем рядом, но по мере роста значения параметра они отдалялись друг от друга. Затем происходило следующее расщепление периодов, и каждая точка аттрактора вновь начинала делиться. Число — инвариант, полученный Файгенбаумом, — позволило ему предугадывать, когда именноэто произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора — в двух, четырех, восьми точках… Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Кроме того, здесь наблюдалась некая сходимость: все числа также подчинялись закону масштаба.

Файгенбаум занимался изучением давно забытой пограничной области между физикой и математикой. Какой из двух дисциплин принадлежит его работа, определить было нелегко. С одной стороны, его труд не принадлежал математике, ибо ничего не доказывал. Конечно, ученый оперировал числами, но математик относится к ним так же, как банкир к мешкам со звонкой монетой. Номинально эти металлические кругляши — предмет труда финансиста, но они мелковаты, и возни с ними не оберешься. Идеи — вот настоящая валюта математики! Изыскания Файгенбаума относились скорее к области физики, причем, как ни странно, физики экспериментальной.

44
{"b":"149202","o":1}