Литмир - Электронная Библиотека

Они рассуждали примерно так. Крошечные атомы магнитики в куске железа не закреплены намертво.

Под влиянием различных сил они свободно поворачиваются относительно друг друга. Но управлять ими в куске металла очень трудно. Они дружно, всем коллективом, образующим домен, противодействуют внешним влияниям.

А если атомы железа осторожно один за другим «наклеивать» на очень холодную поверхность? Ведь тогда они накрепко примерзнут к своим местам и не смогут объединять свои слабые магнитные поля в единое поле домена. Вот тут-то, пожалуй, и можно получить несколько слоев атомов немагнитного железа.

Чтобы атомы, не успев повернуться, примерзали к пластинке, ее надо охладить до температуры жидкого гелия. Значит, если пленка будет немагнитной, она вполне может при такой температуре стать сверхпроводящей.

Лазейка для примирения магнитного железа и сверхпроводимости была найдена. Оставалось провести очень тонкий и весьма сложный эксперимент: получить сверхпроводящее железо не на бумаге, а в жизни. Ленинградским ученым, создавшим оригинальную установку, это удалось. Так люди впервые увидели сверхпроводящее, а значит, немагнитное железо.

Попытки получить тот же результат при охлаждении пленки железа, первоначально нанесенной на теплую поверхность, не увенчались успехом.

Даже при нанесении пленки на холодную поверхность оказалось, что надо было делать это достаточно медленно и осторожно. До сих пор ученым не удалось подробно исследовать физические свойства полученных пленок. При повышении температуры эти пленки разрушаются и, отделяясь от стеклянной поверхности в виде тончайших чешуек, осыпаются. По-видимому, при нанесении атомов железа на холодную поверхность действительно образуется новая, ранее неизвестная разновидность металлического железа, в котором не возникают области самопроизвольного намагничения, препятствующие возникновению сверхпроводящего состояния.

Сейчас ученые с интересом ожидают повторения этих-опытов в других лабораториях.

Изучение пленок металлов вызывает не только научный интерес. Эти пленки могут послужить прекрасным материалом для создания сверхминиатюрных ячеек кибернетических машин.

Представьте себе крошечное колечко из пленки сверхпроводника. Возбужденный в пленке ток будет циркулировать по колечку сколь угодно долго, не меняя своей величины, запоминая, какой сигнал вызвал появление этого тока. Такая ячейка куда компактнее, дешевле, экономичнее сложных элементов памяти, создаваемых из электронных ламп, магнитных барабанов, конденсаторов, которые сегодня используются в вычислительных машинах. Такие пленочные ячейки еще миниатюрнее и совершеннее, чем элементы памяти из сверхпроводящей проволоки (криотроны, персистатроны, персисторы). Подсчитано, например, что блок памяти, составленный из колечек сверхпроводящих пленок объемом в один кубометр, содержит 9 миллионов ячеек памяти. А это прямой путь превратить современные машины-динозавры в малюток.

Пока для целей запоминания ученые уже используют пленки олова, свинца и ниобия. Но уже ведется широкая цепь исследований по получению пленок 113 других металлов и сплавов, которые сделают элементы памяти еще надежнее, дешевле, проще в изготовлении.

Польза холода

Путь по следам оловянной чумы пройден недаром. Он привел в царство холода. И путешественник стал осматриваться, обживаться, знакомиться с новыми порядками, задумываться: не могут ли они быть полезны? Оказалось, что могут и послужить, и помочь, и пригодиться. Могут решить многие насущные проблемы техники.

Даже воздух, обыкновенный воздух в царстве холода становится другим, податливым и легко отдает свой кислород. В 1946 году Капица разработал очень эффективный и удобный способ выделения кислорода из воздуха в огромных количествах — десятками тонн в час. Теперь кислород широко используется во всем мире для автогенной сварки, для принудительного дутья в доменных, мартеновских, бессемеровских печах.

А водород, превратившись при низкой температуре в сжиженный газ, много легче расстается со своим тяжелым изотопом — дейтерием. Дейтерий очень сложно получить в обычных условиях, а на атомных станциях он нужен в больших количествах. Когда о новом способе получения этого ценного продукта, разработанном советскими учеными, рассказал не так давно на Женевской конференции по мирному использованию атомной энергии доктор технических наук М.П. Малков, его сообщение было встречено с большим интересом.

Многие химические соединения, в нормальных условиях очень активные и опасные, можно обезопасить, «разорвав» на куски — радикалы, а затем хранить в замороженном виде, не боясь взрыва. Если их потом отогреть, они соединятся вновь. Эти консервированные радикалы не теряют своих свойств, так же как замороженные фрукты — витаминов.

Когда ядерной физике понадобилась легкая частица, ученые остановили свой выбор на ядре изотопа гелия. В отличие от обычного гелия, названного «гелием-4», его обозначают «гелием-3». Но в естественном гелии его содержится так мало, что надо переработать 20 тонн обычного гелия, чтобы получить всего 1 грамм изотопа. И процесс этот сложный, долгий, кропотливый. Вот почему «гелий-3» — самый дорогой в мире газ.

Харьковские ученые, изучая сверхтекучесть гелия, нашли более легкий способ получения «гелия-3». Оказывается, он не обладает свойством сверхтекучести, и на этом решили сыграть. Ученые охладили гелий. После этого он приходит в состояние сверхтекучести, но его изотоп не принимает в этом участия. И тогда, когда сверхтекучая часть просачивается через тончайший фильтр в дне сосуда, в самом сосуде остается изотоп.

Инженеры воспользовались низкой температурой для создания изящных вакуумных установок, заменивших прежние громоздкие. В них использовано свойство угля в изобилии поглощать при низкой температуре воздух. В новых установках воздух не выкачивается, а его атомы просто прилипают к охлажденному древесному углю, как мухи к липкой бумаге, создавая в установке вакуум.

Но особенно смелые мечты рождает у ученых явление сверхпроводимости. Отсутствие в металлах сопротивления току не может не будить воображение. Вот если бы проложить кабель из сверхпроводника от города к городу и передавать колоссальные мощности без всяких потерь! Или, например, свернуть из такого кабеля катушку и получать сверхсильные магнитные поля. До чего это было бы дешево и удобно!

Представьте себе, что ученые получили сверхпроводящее состояние при обычной температуре (причем выдерживающее сильные магнитные поля) и сделали сверхпроводящие электрические провода. Если бы это случилось, произошел бы переворот в электротехнике. Вся колоссальная мощность Куйбышевской ГЭС смогла быть передана, например, в Москву или на Урал по тонким телефонным проводам. Драгоценная электрическая энергия не тратилась бы зря на разогрев проводов.

Но эта мечта пока так и остается мечтой. Состояние сверхпроводимости наступает лишь при очень низких температурах. В нормальных условиях оно пропадает и пропадают все его преимущества и волшебные свойства. Поместить же тысячекилометровые линии высоковольтных передач на всем пути их следования в ванночки с жидким гелием — задача утопическая и смешная. Расходы по сооружению этой громоздкой системы перекрыли бы весь выигрыш от экономии передаваемой энергии.

Но мечта о сверхсильных магнитах претворилась в действительность уже сегодня.

Сверхпроводящие металлы позволили создать фантастические электромагниты, поддерживающие огромные магнитные поля без затраты электроэнергии. Они в этом отношении напоминают постоянные магниты из закаленной стали или специальных сплавов. Для того чтобы намагнитить кусок стали, достаточно поместить его внутрь проволочной обмотки и на мгновенье пропустить через нее электрический ток. Сталь намагничивается и сохраняет свои магнитные свойства и после выключения тока в обмотке.

Если возбудить круговой электрический ток в сплошном куске сверхпроводника или в замкнутой обмотке из сверхпроводящей проволоки, то ток в них, не встречая сопротивления, будет существовать и после выключения возбудившего его источника. А пока существует электрический ток, действует и окружающее его магнитное поле.

50
{"b":"148403","o":1}