Литмир - Электронная Библиотека

Правда, частицы твердого тела, связанные силами упругости, могут колебаться не только поперек направления распространения звука, но и вдоль этого направления, Поэтому в твердых телах существуют два типа звуковых волн — поперечные и продольные. Но Френель предположил, что световые волны аналогичны только поперечным волнам в твердых телах. Продольные же он оставил без внимания.

Усовершенствованная таким образом волновая теория света прекрасно объясняла все известные науке того времени факты, часть из которых противоречила продольным волнам сжатия и разрежения, с которыми оперировала волновая теория Гюйгенса.

Правда, новая теория света содержала некоторые трудности. Во-первых, никто не мог обнаружить в эфире продольных волн. И нужно было принять на веру, что такие волны в нем вообще не существуют. А если и существуют, то не взаимодействуют с обычными телами и поэтому не могут наблюдаться. Во-вторых, большая скорость света заставляла считать эфир чрезвычайно упругим. Ведь его частицы должны были дрожать в такт со световой волной с необыкновенной быстротой. Это и заставило физиков считать эфир чуть ли не в сто тысяч раз более упругим, чем сталь. Но при этом эфир должен был обладать бестелесностью привидения — сквозь него можно было беспрепятственно проходить. Он никак не препятствовал движению звезд и планет в мировом пространстве и движению обычных тел, с которыми мы имеем дело в повседневной жизни.

Были в новой теории света и другие трудности: нужно было специально объяснять, что происходит с эфиром на границе двух прозрачных тел с различными показателями преломления. Например, на стеклянной стенке аквариума, отделяющей воду от воздуха. Ведь скорость света в воздухе, стекле и воде различна. Значит, прозрачные вещества как-то взаимодействуют с эфиром, изменяя своим присутствием его огромную упругость. Иначе нельзя объяснить различные скорости света во всевозможных прозрачных средах. Нужно было объяснять, как непрозрачные тела задерживают световые волны. Удивительным было и то, что, выполняя роль переносчика световых волн, эфир никак не проявлял своего присутствия ни в каких опытах. Он был неуловим, напоминая этим теплород — другую невесомую субстанцию, долго признававшуюся учеными, царившую в теории теплоты и изгнанную из нее прогрессом науки.

Все это принудило ученых признать эфир исключительной средой, обладающей крайне противоречивыми свойствами.

Волновая теория, доведенная таким образом до совершенства и воплощенная в изящные математические формулы Френелем, объясняла все известные науке того времени оптические явления. Она предсказывала и новые явления, казавшиеся невероятными и невозможными. Противники Френеля указывали, что на основе его теории можно было бы осуществить такой невероятный опыт: пропустив свет от свечи через отверстие в непрозрачной перегородке и, двигая позади нее экран, можно было бы увидеть, как центр экрана поочередно освещается и затемняется по мере его удаления от отверстия. Это противоречило всему многовековому опыту человечества. Всякий разумный человек сочтет такое предсказание безумным. Что может затенить свет позади отверстия? Этот результат теории Френеля выдвигался в качестве решающего аргумента против волновой природы света. Но французский ученый Араго проделал такой опыт, и каждый, кто хотел, мог увидеть, как на экране, передвигающемся вдоль оси его установки, свет чередуется с темнотой! Сообщение, сделанное им во Французской академии наук, потрясло ее членов. Это был триумф волновой теории Френеля.

Шаг к абстракции

Эта тишь и гладь были нарушены взрывом максвелловского гения.

После долгой и кропотливой работы в период 1860...1875 годов Максвелл создал теорию, в которой электрические и магнитные силы природы были объединены в понятие единого электромагнитного поля, включающего видимый свет, невидимые ультрафиолетовые и инфракрасные лучи.

Он свел все известное людям об электричестве и магнетизме к четырем удивительно простым уравнениям. Именно эти уравнения сообщили, что свет — это просто электромагнитные волны, способные распространяться в пустом пространстве так же легко, как в прозрачных телах. Причем из уравнений следовало, что эти электромагнитные волны могут существовать сами по себе. Они представляют собой реальность, ранее неведомую людям и внезапно появившуюся перед учеными как могучий хребет из-за рассеявшегося тумана.

Можно представить, какую смуту посеяла эта концепция. Еретическая сущность ее заключалась прежде всего в том, что она вопреки многовековым традициям и идеалам не покоилась на механических движениях и силах. Переменные величины, изображавшие в математическом аппарате Максвелла электромагнитные поля, по существу, не могли быть представлены какими-либо обычными моделями и поэтому казались современникам крайне абстрактными понятиями. Ведь конкретным и реальным еще со времен Декарта считалось только то, что можно изобразить «посредством фигур и движений».

Большие трудности понимания сущности уравнений и всей теории Максвелла коренились в том, что входящая в них напряженность электрического и магнитного полей не поддавалась непосредственному восприятию. Их можно было изобразить на бумаге в виде стрелочек-векторов, направленных под углом друг к другу, но представить себе их физический смысл в то время казалось невозможным. Эти величины не имели ни очертаний, ни формы, ни веса, их нельзя было сравнить ни с чем известным в повседневной жизни. Конечно, и тогда существовали приборы, реагировавшие на силы, вызываемые электромагнитными полями. Можно было безошибочно сказать, что напряженность одного поля больше или меньше другого. Но сами напряженности были столь странной величиной, что представить их себе зримо было трудно.

Известные физикам законы природы хорошо объясняли движение материальных частиц, потоков жидкостей, упругих твердых тел. Но, описывая электромагнитные поля. Максвелл предлагал в качестве иллюстрации символ, математическую абстракцию! По тем временам — почти нелепость! Как могли воспринять такую абстракцию ученые, воспитанные в духе классических представлений, привыкшие все на свете изображать с помощью наглядных механических моделей? Как могли они поверить в какой-то мир электромагнитных полей, который существует сам по себе и не нуждается ни в каких дополнительных иллюстрациях?

Мало кто из физиков хотел ломать себе голову над этой безумной теорией.

Поэтому-то и через двадцать лет после создания новой теории в ее смысл проникли лишь несколько физиков. Остальным она оставалась чуждой. И причина была та же: никто не мог понять и прочувствовать какое-нибудь явление иначе, как в виде конкретной механической модели. Сам Максвелл был изобретательным творцом моделей электромагнитного поля. В одной из таких моделей шестиугольные «молекулярные вихри» приводятся в движение «направляющими колесиками». Это показывает, что он сам еще долго не понимал, что создал новую науку, которая не нуждается в опоре на динамику Ньютона, а входящие в нее величины являются столь же фундаментальными, как силы и движения. Действительно, через семь лет после создания теории Максвелл писал: «Я приложу все усилия к тому, чтобы представить как можно яснее соотношение между математической формой этой теории и математической формой фундаментальной науки о динамике для того, чтобы мы могли в какой-то мере подготовиться к выбору тех динамических моделей, среди которых мы будем искать иллюстрации или объяснения явлений электромагнитных».

То, что сам Максвелл не сумел вырваться из пут механических моделей, пожалуй, самое курьезное во всей этой истории. Не будучи в силах отрешиться от желания иметь наглядную модель, он нашел ее в упругих силовых трубках Фарадея, преобразовав их в наглядные картины силовых линий электромагнитных полей, верно служащих нам и поныне.

Теперь наши приборы позволяют измерять реальные величины — поля, входящие в уравнения Максвелла. Все это вместе с многолетней тренировкой, через которую прошли не только поколения ученых, но и поколения школьников, сделало для нас уравнения Максвелла не менее понятными, чем уравнения механики. И нам зачастую трудно понять, какого напряжения мысли требовало освоение этих уравнений менее чем сто лет назад.

3
{"b":"148403","o":1}