Если проделать такой же опыт с любой другой жидкостью, ничего подобного не увидишь. Капля как бы застынет, чуть располнев.
И даже это было еще не самым удивительным. Что, если бы вы увидели человека, бегущего вверх по отвесной стене? Это невозможно? Законы тяготения этого не допускают? Приблизительно то же подумали ученые, когда увидели, как жидкий гелий с необычайной быстротой ползет вверх по стенкам сосуда. Это невозможно, ужаснулись многие из них, а трение, а вязкость?! И еще более изумились, услышав мнение советского ученого Петра Леонидовича Капицы: вязкости у жидкого гелия вблизи абсолютного нуля нет вовсе. Это сверхтекучая жидкость.
Так впервые в 1938 году мир услышал удивительное слово «сверхтекучесть».
Вывод П.Л. Капицы был результатом долгих и кропотливых экспериментов, итогом многих раздумий. Почему так молниеносно распространяется тепло внутри жидкого гелия? Как и обычно, его переносит сама жидкость. Ее слои перемешиваются и менее теплые нагреваются от более теплых. Так происходит всегда во всех жидкостях. Но в жидком гелии это происходит молниеносно. Как же так, ведь слои всегда трутся друг о друга, а это должно мешать быстрому перемешиванию. А если вязкость не препятствует? Значит, ее нет!
И Капица подтверждает свою догадку блестящим экспериментом. Он пропускает жидкий гелий сквозь мельчайшие щели — капилляры, через которые обычная вязкая жидкость если и проходит, то ей нужно затратить на это многие миллиарды лет. А гелий, охлажденный до 2 градусов выше абсолютного нуля, просочился буквально на глазах, получив «диплом» первой в истории науки сверхтекучей жидкости.
Жидкость без вязкости! Это было одним из поразительных открытий нашего века. Как такая жидкость отнеслась бы к инородному телу, погруженному в нее? Оказала бы ему сопротивление или нет?
И экспериментатор спешит поставить такой опыт: он опускает в жидкий гелий качающийся маятник (паучок Капицы). Жидкость без трения, без вязкости не остановит его. Но что это? Совершается непонятное: маятник прекращает движение, останавливается... Жидкий гелий повел себя как самая обычная, тривиальная жидкость.
Есть от чего прийти в смятение! В одном случае (с капилляром) жидкий гелий не имеет вязкости, в другом (с маятником) — имеет. Все происходит так, как будто одновременно в нем заключены... две жидкости. Так оно и оказалось. Вот как описывает ни на что не похожее поведение жидкого гелия замечательный советский физик Лев Давидович Ландау: «...часть жидкости будет вести себя как нормальная вязкая жидкость, «цепляющаяся» при движении... Остальная же часть массы будет вести себя как не обладающая вязкостью сверхтекучая жидкость».
Так гелий доказал, что знакомая нам при нормальных температурах жизнь веществ в области предельного холода подчиняется совсем иным законам. Здесь отношения между атомами и молекулами диктуются законами микроскопического мира, неподвластными классической физике. Это поняли два замечательных советских физика и не только поняли, но и доказали: академик Капица — рядом убедительных экспериментов, академик Ландау — серией виртуозных логических и математических построений, которые он оформил в 1940 году в виде теории сверхтекучести. Они подарили миру прозрение тайны низких температур...
Куда привели следы
С этого времени положение в науке о низких температурах резко меняется. Ученые узнали главное — законы, правящие в царстве холода. Теперь оставалось выяснить нормы поведения, которые законы микромира — квантовые законы — диктуют различным веществам.
Приблизительно с тридцатых годов «столица холода» перемещается из Голландии в Советский Союз, Вокруг Капицы и Ландау сплачивается группа молодых ученых, работы которых в новой области физики становятся ведущими. И если раньше исследователи двигались только по серому следу оловянной чумы и желтому следу гелия, то теперь изыскания ведутся сразу во многих направлениях. Фронт исследований простирается от Москвы до Ленинграда, от Харькова до Тбилиси, от Сухуми до Свердловска.
Кольцо вокруг тайны холода сужается. Теперь ученые наблюдают уже не случайные, непредвиденные явления. Они стараются получить результаты, предсказанные теорией сверхтекучести.
Часть из них продолжает двигаться по следу гелия.
Действительный член Академии наук Грузинской ССР Э.Л. Андроникашвили изучает свойства вращающегося гелия. Гелий остается верным себе. И вращается-то он не так, как все другие жидкости. Если очень закрутить его, он начинает вести себя уже не как жидкость, а как упругое тело. Отдельные слои становятся упругими жгутами, которые упираются и противятся вращению. Ученый упорно ищет отгадку очередного фокуса квантовой жидкости.
Член-корреспондент Академии наук СССР А.И. Шальников, чтобы изучить взаимодействие нормальной и сверхтекучей частей жидкого гелия, «подкрашивает» его электронами. По их движению он надеется проследить за отношением этих двух разных жидкостей.
Доктор физико-математических наук В.П. Пешков обнаружил «второй звук» в гелии, предсказанный теорией Ландау. Оказалось, что, кроме обычного звука, представляющего собой волны сжатия и разрежения, в сверхтекучем гелии возможны незатухающие тепловые волны, названные вторым звуком.
Что бы вы сказали, если бы обнаружили, что вода в чайнике никак не нагревается даже при сильном огне? Сам чайник уже раскален, а вода в нем еще холодная. Нечто подобное обнаружил П.Л. Капица еще в далекие дни первых опытов с гелием.
Объяснить это странное явление удалось лишь в наши дни ученику Ландау доктору физико-математических наук И.М. Халатникову. Оказывается, жидкий гелий нагревается вовсе не так, как вода в чайнике, — от соприкосновения с его стенками. Гелий нагревают те самые неслышимые звуковые волны, которые исходят от стенок сосуда при их нагревании. А процесс этот и не быстрый и не такой уж эффективный...
Так, шаг за шагом, ученые разоблачают тайны необычного характера гелия.
Много интересных явлений предсказали в области низких температур и экспериментально подтвердили московские физики: действительные члены Академии наук СССР В.Л. Гинзбург, И.Я. Померанчук, члены-корреспонденты Академии наук СССР Е.М. Лифшиц, А.А. Абрикосов и многие другие. Но и их работами далеко не исчерпываются исследования всех замечательных и многообразных явлений, связанных со сверхтекучестью гелия.
Вызов физике
Ну, а куда привел ученых след девятнадцати металлов? Туда же, куда и след гелия. Причина сверхтекучести гелия и сверхпроводимости металлов оказалась общей.
Все, конечно, замечали, как вода просачивается сквозь песок. Так и электрический ток представляет собой движение электронов, просачивающихся между атомами металла. Электроны тормозятся атомами, которые сами находятся в тепловом движении и непрестанно колеблются. На эти столкновения и уходит энергия электронов, полученная ими от электрической батареи.
Атомы металла, получив дополнительную энергию, раскачиваются еще больше и еще сильнее мешают продвижению электрического тока. Таков механизм сопротивления металлов электрическому току. Это не было для ученых откровением — явление давно изучено. Но то, чему стали свидетелями ученые, охладившие металлы, было действительно откровением. Куда девается способность металлов сопротивляться электрическому току? Что в них происходит?
Если металл охладить, тепловые колебания атомов уменьшаются. Они меньше мешают электрическому току. А при очень низкой температуре почти совсем не мешают.
Но такое «замерзание» сопротивления не может привести к сверхпроводимости. Ведь тепловые колебания в соответствии с классической физикой убывают вместе с температурой и уменьшаются до нуля только при абсолютном нуле температуры. Квантовая физика показала, что даже при абсолютном нуле движения внутри вещества не прекращаются полностью — остаются так называемые нулевые колебания атомов и элементарных частиц.