Литмир - Электронная Библиотека

Теперь основную роль начинает играть темная материя. Под действием собственной гравитации области повышенной плотности останавливаются в своем расширении и начинают сжиматься, в результате чего из темной материи образуются гравитационносвязанные системы, называемые гало. В гравитационном поле Вселенной образуются «ямы», в которые устремляется обычное вещество. Накапливаясь внутри гало, оно формирует галактики и их скопления. Этот процесс образования структур начался более 10 миллиардов лет назад и шел по нарастающей, пока не наступил последний перелом в эволюции Вселенной. Через 7 миллиардов лет (это примерно половина нынешнего возраста Вселенной) плотность вещества, которая продолжала снижаться из-за космологического расширения, стала меньше плотности темной энергии. Тем самым завершилась эпоха доминирования вещества, и теперь темная энергия контролирует эволюцию Вселенной. Какова бы ни была ее физическая природа, проявляется она в том, что космологическое расширение вновь, как в эпоху инфляции, начинает ускоряться, только на этот раз очень медленно. Но даже этого достаточно, чтобы затормозить формирование структур, а в будущем оно должно вовсе прекратиться: любые недостаточно плотные образования будут рассеиваться ускоряющимся расширением Вселенной. Временное «окно», в котором работает гравитационная неустойчивость и возникают галактики, захлопнется уже через десяток миллиардов лет. Дальнейшая эволюция Вселенной зависит от природы темной энергии. Если это космологическая постоянная, то ускоренное расширение Вселенной будет продолжаться вечно. Если же темная энергия — это сверхслабое скалярное поле, то после того как оно достигнет состояния равновесия, расширение Вселенной станет замедляться, а возможно сменится сжатием. Пока физическая природа темной энергии неизвестна, все это не более чем умозрительные гипотезы. Таким образом, с определенностью сказать можно только одно: ускоренное расширение Вселенной будет продолжаться еще несколько десятков миллиардов лет. За это время наш космический дом — галактика Млечный Путь — сольется со своей соседкой — Туманностью Андромеды (и большинством галактик-спутников меньшей массы, входящих в состав Местной Группы). Все прочие галактики улетят на большие расстояния, так что многие из них нельзя будет увидеть даже в самый мощный телескоп. Что касается реликтового излучения, которое приносит нам так много важнейшей информации о структуре Вселенной, то его температура упадет почти до нуля, и этот источник информации будет потерян. Человечество останется Робинзоном на острове с эфемерной перспективой обзавестись хотя бы Пятницей.

Журнал «Вокруг Света» №09 за 2008 год - TAG_img_cmn_2008_09_08_012_jpg652052

Увидеть темную материю нельзя, но по косвенным признакам можно узнать ее распределение на разных расстояниях. В дальнейшем по таким срезам восстанавливается трехмерная карта темной материи. Фото: NASA, ESA, R. MASSEY (CALIFORNIA INSTITUTE OF TECHNOLOGY)

Крупномасштабная структура Вселенной

У космологов имеются два основных источника знаний о крупномасштабной структуре Вселенной. Прежде всего это распределение в окружающем нас пространстве светящейся материи, то есть галактик. Трехмерная карта показывает, в какие структуры — группы, скопления, сверхскопления — объединяются галактики и каковы характерные размеры, формы и численность этих образований. Тем самым становится понятно, как распределено вещество в современной Вселенной.

Другим источником информации служит распределение интенсивности реликтового излучения по небесной сфере. Карта неба в микроволновом диапазоне несет информацию о распределении неоднородностей плотности в ранней Вселенной, когда ее возраст составлял около 300 тысяч лет — именно тогда вещество стало прозрачным для излучения. Угловые расстояния между пятнами на микроволновой карте говорят о размерах неоднородностей в то время, а перепады яркости (они, кстати, очень маленькие, порядка сотой доли процента) указывают на степень уплотнения зародышей будущих скоплений галактик. Тем самым у нас есть как бы два временных среза: структура Вселенной в моменты через 300 тысяч и 14 миллиардов лет после Большого взрыва .

Теория говорит о том, что характеристики наблюдаемых структур сильно зависят от того, какая часть материи во Вселенной приходится на вещество (обычное и темное). Расчеты, основанные на наблюдательных данных, показывают, что его доля составляет сегодня около 30% (из которых лишь 5% приходится на обычное вещество, состоящее из атомов). А значит, остальные 70% — это материя, не входящая ни в какие структуры, то есть темная энергия. Этот аргумент не столь прозрачен, поскольку за ним стоят сложные расчеты, описывающие образования структур во Вселенной. Тем не менее он действительно более сильный. Это можно проиллюстрировать такой аналогией. Представьте, что внеземная цивилизация стремится обнаружить разумную жизнь на Земле. Одна группа исследователей заметила идущее от нашей планеты мощное радиоизлучение, которое периодически изменяет частоту и интенсивность, и объясняет это работой электронного оборудования. Другая группа послала к Земле зонд и сфотографировала квадраты полей, линии дорог, узлы городов. Первый аргумент, конечно, проще, но второй — убедительнее.

Журнал «Вокруг Света» №09 за 2008 год - TAG_img_cmn_2008_09_08_013_jpg381586

Разные срезы относятся к разным моментам в прошлом. Поэтому данная карта является пространственновременной и отражает эволюцию распределения материи. Фото: NASA, ESA, R. MASSEY (CALIFORNIA INSTITUTE OF TECHNOLOGY)

Продолжая эту аналогию, можно сказать, что еще более наглядным свидетельством разумной жизни стало бы наблюдение за формированием перечисленных структур. Конечно, человеку пока не под силу в реальном времени наблюдать, как формируются скопления галактик. Тем не менее можно определить, как менялось их число по ходу эволюции Вселенной. Дело в том, что в силу конечности скорости света наблюдение объектов на больших расстояниях эквивалентно заглядыванию в прошлое.

Темп образования галактик и их скоплений определяется скоростью роста возмущений плотности, которая, в свою очередь, зависит от параметров космологической модели, в частности от соотношения вещества и темной энергии. Во Вселенной с большой долей темной энергии возмущения растут медленно, а значит, сегодня скоплений галактик должно быть ненамного больше, чем в прошлом, и с расстоянием их число будет убывать медленно. Напротив, во Вселенной без темной энергии количество скоплений довольно быстро сокращается с углублением в прошлое. Выяснив из наблюдений темп появления новых скоплений галактик, можно получить независимую оценку плотности темной энергии.

Есть и другие независимые наблюдательные аргументы, подтверждающие существование однородной среды, которая оказывает определяющее влияние на строение и эволюцию Вселенной. Можно сказать, что утверждение о существовании темной энергии стало итогом развития всей наблюдательной космологии ХХ века.

Вакуум и другие модели

Если в существовании темной энергии большинство космологов уже не сомневаются, то вот относительно ее природы ясности пока нет. Впрочем, физики не первый раз попадают в такое положение. Многие новые теории начинаются с феноменологии, то есть формального математического описания того или иного эффекта, а интуитивно понятные объяснения появляются намного позже. На сегодня, описывая физические свойства темной энергии, космологи произносят слова, которые для непосвященного больше похожи на заклинание: это среда, давление которой равно плотности энергии по величине, но противоположно по знаку. Если это странное соотношение подставить в уравнение Эйнштейна из общей теории относительности, то окажется, что такая среда гравитационно отталкивается от самой себя и, как следствие, ускоренно расширяется и ни за что не соберется ни в какие сгустки.

Нельзя сказать, что мы часто имеем дело с подобной материей. Однако именно так уже на протяжении многих лет физики описывают вакуум. По современным представлениям, элементарные частицы существуют не в пустом пространстве, а в особой среде — физическом вакууме, который как раз и определяет их свойства. Эта среда может находиться в различных состояниях, отличающихся плотностью запасенной энергии, и в разных видах вакуума элементарные частицы ведут себя по-разному.

4
{"b":"146347","o":1}