Литмир - Электронная Библиотека
A
A

Яблони на Марсе?

Следующий кандидат на звание «запасной планеты», несомненно, Марс. Считается, что в прошлом он напоминал Землю, обладая более плотной атмосферой и водяными океанами. Климат планеты мягче лунного и немного напоминает антарктический: днем на экваторе температура достигает +20 °C, а ночью падает до –80 °С. Сегодня вода здесь существует в виде льда, а атмосфера состоит в основном из углекислоты. Это бы полбеды, но ее давление в 160 раз меньше земного, так что человеку здесь не обойтись кислородной маской, а требуется полноценный скафандр. Еще один недостаток — слабое магнитное поле, плохо защищающее от космической радиации. Тем не менее многие считают Марс самой пригодной для терраформирования планетой Солнечной системы.

Казалось бы, начать надо с некоторого подогрева планеты, чтобы растопить полярные шапки, высвободить имеющиеся в них запасы воды и подготовиться ко второму, биологическому этапу терраформирования. Однако на самом деле первейшей целью должно стать повышение атмосферного давления как минимум в несколько десятков раз. В противном случае вода просто не сможет существовать в жидком виде и будет переходить из твердой фазы сразу в пар. Кроме того, разреженная атмосфера Марса практически не задерживает солнечный ультрафиолет, губительный для любой жизни на поверхности.

Впрочем, на первых порах повысить давление можно как раз за счет испарения полярных шапок. Для этого нужно покрыть их тончайшей темной пленкой или даже просто пылью, снизив долю отражаемого солнечного тепла. Если сыпать угольную пыль слоем толщиной 0,1 миллиметра, то на всю операцию ее потребуется примерно 400 миллионов тонн. Столько перевозит вся земная авиация лет за пять. Или можно использовать терморасширенный графит, плотность которого в десятки раз меньше. Если бы стояла задача растопить на Земле гренландский ледник, сравнимый по площади с марсианскими полярными шапками, с этим, в принципе, можно было бы справиться. На Марсе же для этого потребуется создать целую индустрию. Другой способ — попытаться растопить марсианские льды с помощью орбитальных зеркал — концентраторов солнечного излучения. Правда, их сборка на орбите Марса — задача, не уступающая по сложности первой.

Но даже в случае выполнения этой первоочередной задачи успех надо будет весьма оперативно закрепить. Испарившихся полярных шапок, скорее всего, не хватит, чтобы в должной мере согреть планету и предотвратить новое оледенение. Необходимо, не откладывая, продолжать пополнение атмосферы другими газами, в первую очередь кислородом. Часто предлагают использовать для этой цели микроорганизмы или растения. Но они будут добывать кислород из атмосферной углекислоты, а значит, не увеличат, а, наоборот, уменьшат плотность воздуха. К тому же никакая жизнь не сможет развиваться на Марсе, пока  не обеспечена защита от солнечного ультрафиолета. Так что задачу насыщения атмосферы кислородом на микробов не переложишь. На Марсе, как и на Луне, кислород можно вырабатывать из грунта, только масштабы производства должны быть на порядок больше. Одна из стратегий состоит в том, чтобы использовать для этого кислородные микрозаводы, самореплицирующиеся на молекулярном уровне. В этом случае всю работу можно провернуть за несколько сотен лет. С появлением кислорода солнечное излучение само станет нарабатывать в атмосфере защитный озон, и появится возможность заселить Марс живыми организмами, хотя на планете по-прежнему будет еще слишком холодно для комфортного проживания человека.

Журнал «Вокруг Света» №07 за 2010 год - TAG_img_cmn_2010_09_15_007_jpg440126

Алексей Леонов и Андрей Соколов «Затмение на Луне». Яркое кольцо вокруг Земли — ее атмосфера, преломляющая лучи скрытого позади Солнца. Хотя на атмосферу приходится всего миллионная доля массы Земли, именно воздух — первое условие пригодности планеты для жизни. Чтобы ходить по Луне без скафандра, вполне достаточно извлечь кислород из метрового слоя грунта по всей ее поверхности. Фото: AKG/EAST NEWS

Тушение адского огня

Венера с ее ужасающими пятьюстами градусами Цельсия на поверхности и давлением в сотню атмосфер на первый взгляд мало подходит для терраформинга, тем не менее по размерам и силе тяжести она очень близка Земле. Чтобы приспособить ее для человека, надо остудить поверхность, разогретую мощнейшим парниковым эффектом, а значит, предстоит преобразовать атмосферу: избавить ее от углекислого газа с диоксидом серы и наполнить кислородом.

Одна из первых программ терраформирования Венеры принадлежит американскому астробиологу Карлу Сагану. В 1961 году он предложил заселить облака Венеры генетически модифицированными бактериями, которые будут поглощать углекислый газ, выделять кислород, а углерод фиксировать в виде органических соединений, постепенно выпадающих на поверхность планеты. Однако спустя более 20 лет Саган вынужден был признать, что его метод не сработает: атмосфера Венеры оказалась значительно плотнее, чем он предполагал, и в ней очень мало водорода, необходимого для жизнедеятельности бактерий.

В модифицированных вариантах плана Сагана предлагается использовать высокотехнологичные самовоспроизводящиеся аэростаты. Однако эта технология еще менее реалистична, чем размножающиеся марсианские кислородные заводы — тем, по крайней мере, доступны все химические элементы, имеющиеся на поверхности планеты. Аэростатам же предстоит производить «потомство» практически из одного только углерода.

Даже если таким способом удастся сократить количество углекислоты в атмосфере и ослабить парниковый эффект, этого будет недостаточно для охлаждения планеты. Поэтому вдобавок предлагается экранировать часть поверхности Венеры от солнечного излучения огромным космическим щитом, разместив его в точке Лагранжа между Венерой и Солнцем. Постройка в космосе сооружения размером в тысячи километров выходит далеко за пределы современных возможностей человечества, но и этого будет недостаточно для превращения планеты в обитель жизни. Ведь нужно еще сформировать на Венере гидросферу.

Просто добавь воды

Энтузиасты терраформирования предлагают добывать водород на периферии планетной системы, где обретаются транснептуновые астероиды и кометы, богатые, как предполагается, водяным, аммиачным и метановым льдом. Корректируя орбиты, можно сбрасывать их на засушливые планеты для восполнения недостатка водорода. Согласно современным космогоническим теориям, нечто подобное происходило под воздействием тяготения планет-гигантов в первые миллионы лет эволюции Солнечной системы. Именно так вода появилась на Земле и соседних планетах. Но Марс почти потерял ее из-за своей слабой гравитации, а Венера — из-за высокой температуры. «Строительный мусор», оставшийся на  холодных окраинах планетной системы, должен был сохранить большое количество водородсодержащих соединений. Однако, обсуждая план их использования, надо четко представлять себе его масштабы.

Объем земных океанов составляет около 1360 миллионов кубических километров. Если эту воду превратить в один ледяной астероид, он имел бы диаметр 1400 километров. А с учетом неизбежных примесей потребуется планетоид размером более 1500 километров. Столкновений с такими объектами не случалось в Солнечной системе миллиарды лет. Удар изувечит планету до неузнаваемости: расплавит значительную часть коры и разворотит мантию до глубины в сотни километров. Тысячи лет придется ждать восстановления твердой поверхности, и еще миллионы лет ее будут сотрясать колоссальные землетрясения и извержения вулканов. Часть вещества при ударе вышвырнет в межпланетное пространство, отчего резко возрастет метеоритная опасность во всей внутренней части Солнечной системы. А из-за разогрева в космос станет утекать атмосфера, и в первую очередь доставленная такой страшной ценой вода.

Вряд ли эту затею можно назвать терраформированием. К тому же нет полной уверенности, что в составе транснептуновых объектов пояса Койпера действительно так много водорода. Наконец, непонятно, какой силой можно изменить орбиту малой планеты полуторатысячекилометрового размера. Поэтому апологеты бомбардировок обычно предпочитают говорить не об астероидах, а о кометных ядрах из облака Оорта. За ними, правда, придется лететь дальше, но зато они имеют размеры от сотен метров до десятков километров и, судя по спектрам кометных хвостов, водорода в них много.

18
{"b":"146220","o":1}