где х — значение варьирующегося признака;
n – число единиц совокупности.
Базой для расчета взвешенной средней арифметической является обработанный цифровой материал, т. е. сгруппированные данные. Для таких данных используется формула средней арифметической взвешенной:
где х — значение варьирующегося признака;
m – веса, т. е. частоты, показывающие, сколько раз повторяется каждое значение признака в данной совокупности.
Формула получена путем взвешивания значений каждой варианты и деления суммы вариант на сумму весов. Формулы простой и взвешенной средней арифметической не эквивалентны друг другу.
Свойства средней арифметической:
1) алгебраическая сумма отклонений всех вариантов от средней арифметической равна нулю:
x = Σxm /Σm => x Σm = Σxm =>Σ(х-х)m = 0.
Это свойство используется для проверки правильности расчетов;
2) сумма квадратов отклонений вариант от их средней арифметической больше суммы квадратов отклонений вариант от любого другого числа, не равного средней арифметической:
где x ≠ a;
3) среднее алгебраическое суммы нескольких варьирующихся признаков равно сумме средних этих признаков:
k = x + y + z + …;
Это свойство позволяет определить сумму путем суммирования значений каких*либо признаков;
4) если все варианты (х) увеличить или уменьшить на какое-либо постоянное число (а), средняя (x) увеличится или уменьшится на то же самое число (y):
(х – а) = у;
x – a = y;
5) если все варианты (х) увеличить или уменьшить в одно и то же число раз (в), то средняя арифметическая увеличится или уменьшится в то же самое число раз:
если
,
то,
8. Средняя гармоническая, геометрическая, квадратическая, степенная
При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.
Средняя гармоническая простая строится по формуле:
где n — число единиц совокупности или число вариантов;
х — значения варьирующегося признака.
Средняя гармоническая простая используется для несгруппированных данных.
Средняя гармоническая взвешенная строится по формуле:
где х — значения варьирующего признака;
m — веса;
n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.
Средняя квадратическая простая строится по формуле:
где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.
Средняя квадратическая простая используется для несгруппированных данных.
Средняя квадратическая взвешенная строится по формуле:
где m – веса;
х – значения варьирующего признака.
Среднюю квадратическую взвешенную используют для сгруппированных данных.
Данные формулы используются редко, в специальных расчетах.
Средняя геометрическая простая строится по формуле:
где n – число единиц совокупности или число вариантов;
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.