Литмир - Электронная Библиотека
Содержание  
A
A
ТТЧ страдает ω-неполнотой

От какой именно разновидности неполноты «страдает» ТТЧ? Мы вскоре увидим, что речь идет о неполноте типа «омега», определенной в главе VIII. Это означает, что существует некая бесконечная пирамидальная семья строчек, каждая из которых является теоремой — но при этом соответствующая «итоговая» строчка теоремой не является. Эту итоговую не-теорему найти нетрудно:

~Aа:~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}

ΛARITHMOQUINE{SS… SSSO/a'',a'}>

.                       |_____|

.                     «S» d раз

Чтобы понять, почему эта строчка — не теорема ТТЧ, заметьте, что она крайне напоминает саму G — на самом деле, согласно правилу замены ТТЧ, от нее до G — лишь один шаг. Следовательно, если бы она была теоремой, то нам бы пришлось признать теоремность G. Теперь постараемся показать, что все строчки в пирамидальной семье на самом деле являются теоремами. Мы можем легко их записать:

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{O/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

*   *

*   *

*   *

Что утверждает каждая из этих строчек? Вот их соответствующие переводы.

«0 и арифмоквайнификация d — не пара доказательства ТТЧ».

«1 и арифмоквайнификация d — не пара доказательства ТТЧ».

«2 и арифмоквайнификация d — не пара доказательства ТТЧ».

«3 и арифмоквайнификация d — не пара доказательства ТТЧ».

«4 и арифмоквайнификация d — не пара доказательства ТТЧ».

*   *

*   *

*   *

Каждое из этих утверждений говорит о том, формируют ли два определенных числа пару доказательства, или нет. (С другой стороны, G говорит о том, является ли одно определенное число. числом-теоремой, или нет.) Поскольку G — не теорема, не существует такого числа, которое составляло бы пару доказательства с Гёделевым номером G. Таким образом, каждое из утверждений пирамидальной семьи истинно. Основная идея в том, что свойство являться парой доказательств примитивно рекурсивно и, следовательно, представимо — поэтому каждое из утверждений выше должно быть переводимо в теорему ТТЧ, что означает, что все утверждения в нашей бесконечной пирамидальной семье — теоремы. И это показывает, почему ТТЧ ω-неполна.

Два разных способа заткнуть дыру

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G ложна. Из нашего предположения о непротиворечивости ТТЧ следует, что в ней не могут быть выведены ложные утверждения.

Таким образом, ни G, ни ее отрицание ~G не являются теоремами ТТЧ. Мы нашли в нашей системе дыру — неразрешимое суждение. Это не должно нас особенно беспокоить, если мы достаточно свободомыслящи, чтобы признать, что из этого следует. Это означает, что ТТЧ можно дополнить, как можно дополнить абсолютную геометрию. В действительности, ТТЧ, как и абсолютную геометрию, можно расширить в двух направлениях. Она может быть расширена в стандартном направлении, что соответствует расширению абсолютной геометрии в Эвклидовом смысле; или же, она, может быть расширена в нестандартном направлении, что, разумеется, соответствует расширению абсолютной геометрии в неэвклидовом смысле. Стандартным дополнением будет:

добавление G в качестве новой аксиомы.

Это кажется довольно безвредным и даже желательным, поскольку G всего на всего утверждает некую истину о системе натуральных чисел. А как насчет нестандартного расширения? Если следовать аналогии с ситуацией аксиомы параллельности, оно должно означать:

добавление отрицания G в качестве новой аксиомы.

Но как мы можем даже подумать о таком ужасной, отвратительной вещи? В конце концов, если перефразировать Саккери, не является ли то, что утверждает ~G, «противным самой природе натуральных чисел»?

Супернатуральные числа

Надеюсь, что вы оценили иронический смысл этой цитаты. Проблема с подходом Саккери к геометрии заключалась в том, что он основывался на жестком понятии о том, что истинно и что ложно; он хотел доказать только то, что он считал истинным с самого начала. Несмотря на его оригинальный метод — отрицание пятого постулата и доказательство многих «противных» утверждений вытекающей из этого геометрии — Саккери не допускал возможности иного взгляда на точки и линии. Не будем повторять его знаменитой ошибки; вместо этого давайте рассмотрим как можно беспристрастней, что означала бы добавка ~G в качестве аксиомы ТТЧ. Подумайте только, на что была бы похожа современная математика, если бы люди не решили в свое время добавить к ней аксиом типа:

Ea: (a+a)=S0

Ea: Sa=0

Ea: (a*a)=SS0

Ea: S(a*a)=0

Хотя каждое из этих утверждений «противно природе ранее известных числовых систем», каждое из них в то же время означает значительное и замечательное расширения понятия целых чисел: рациональные числа, отрицательные числа, иррациональные числа, мнимые числа. ~G пытается открыть нам глаза на такую возможность. В прошлом каждое новое расширение системы натуральных чисел встречалось в штыки. Это можно заметить по именам, данным непрошеным пришельцам: «иррациональные», «мнимые». Оставаясь верными традиции, давайте назовем числа, которые порождает ~G, супернатуральными, поскольку они противоречат всем понятиям разума и здравого смысла.

Если мы собираемся добавить ~G в качестве шестой аксиомы ТТЧ, мы должны постараться понять, каким образом эта строчка может сосуществовать с вышеприведенной пирамидальной семьей. Ведь ~G утверждает, что

«существуют некое число, составляющее пару доказательства с d».

При этом члены пирамидальной семьи с успехом утверждают, что

«0 не является этим числом»

«1 не является этим числом»

«2 не является этим числом»

*

*

Это сбивает с толку, поскольку кажется совершеннейшим противоречием (именно поэтому это называется ω-противоречивостью). Наша проблема заключается в том, что, так же как и в случае с расширенной геометрией, мы упрямо отказываемся модифицировать интерпретацию символов, несмотря на то, что прекрасно понимаем, что имеем дело с модифицированной системой. Мы хотим обойтись без добавления хотя бы одного символа — что, разумеется, оказывается невозможным.

Проблема разрешается, если мы интерпретируем E как «существует некое обобщенное натуральное число» вместо «существует некое натуральное число». Одновременно с этим нам придется соответствующим образом изменить интерпретацию A. Это значит, что, кроме натуральных, мы открываем дверь для неких новых чисел. Это супернатуральные числа. Натуральные и супернатуральные числа вместе составляют обобщенные натуральные числа.

Кажущееся противоречие теперь испаряется, поскольку пирамидальная семья все еще утверждает, что «никакое натуральное число не составляет пару доказательства ТТЧ с арифмоквайнификацией d» Строчки этой семьи ничего не упоминают о супернатуральных числах, поскольку для них не существует символов. С другой стороны, ~G утверждает, что существует такое обобщенное натуральное число, которое составляет пару доказательства ТТЧ с арифмоквайнификацией d. Противоречия больше нет. ТТЧ+~G превращается в непротиворечивую систему, если ее интерпретация включает супернатуральные числа.

Поскольку мы решили расширить интерпретацию обоих кванторов, это означает, что значение любой включающей их теоремы также расширяется. Например, теорема коммутативности

Aa:Aa':(a+a')=(a'+a)

теперь говорит нам, что сложение коммутативно для всех обобщенных чисел — другими словами, не только для натуральных, но и для супернатуральных чисел. Таким же образом, теорема ТТЧ. утверждающая, что «2 — не квадрат натурального числа» —

142
{"b":"138924","o":1}