Литмир - Электронная Библиотека
A
A

Весьма важным для цифровой вычислительной машины является возможность введения числовых данных в виде таблиц. Для этого должно быть устройство для чтения таблиц и, если нужно, интерполирования. В АЦВМ таблица может быть составлена двояко:

а) функция представляется в виде ряда

f(a + h) = C + C1h + C2h2 + С3h3 +…

б) в таблицу заносится аргумент и соответствующие значения коэффициентов. C, C1, C2, С3… Сn

в) в таблицу заносится аргумент и необходимое число табличных разностей. В задачах с монотонно изменяющимся аргументом таблица может автоматически, по мере необходимости, обновляться с помощью устройства для набора таблицы.

Чтение таблицы и интерполирование в АЦВМ производится отдельным Интерполятором, представляющим собой упрощенную цифровую вычислительную машину с фиксированным программированием, работающую так же, как основная машина.

Для данной интерполяционной формулы программа не меняется и наносится не на ленту, а на барабан, непрерывно вращающийся с большой скоростью.

В цепи пускового сигнала главного программного датчика интерполятора имеется клапанное устройство, управляемое главным программным датчиком машины. Если после передачи аргумента в таблицу открыть цепь пускового сигнала главного программного датчика интерполятора, то начнется цикл вычислений по интерполяционной формуле, нанесенной на барабане. После одного оборота барабана вычисления закончатся, результат получится во втором (накапливающем) сумматоре интерполятора, выход которого включен в цифровую магистраль машины. Для разных интерполяционных формул должны быть разные программные барабаны, которые могут заменяться перед пуском машины. Предусматривается возможность одновременного применения нескольких программных барабанов, выбор которых (интерполяционной формулы) производится главным программным датчиком. В интерполяторе могут быть несколько таблиц для различных функций, набираемых с помощью устройства для набора таблицы.

Кроме таблиц, набираемых извне, может быть таблица, которая набирается машиной по ходу вычислений. Чтение этой таблицы производится тем же самым интерполятором. Предусматривается интерполирование до 5-го порядка. Однако, при удвоении таблицы в ширину (присоединением такой же таблицы с нанесенными на ней следующими табличными разностями), порядок интерполирования может быть повышен. Длительность интерполирования зависит от применяемой интерполяционной формулы и может быть порядка нескольких десятков тактов машины. Так как интерполятор работает автономно, то он может проводить вычисления параллельно с другими операциями, выполняемыми машиной, и поэтому не замедляет процесс вычислений. Интерполятор может быть использован также для вычисления некоторых часто используемых функций, представленных в виде ряда.

Результаты вычислений записываются (в двоичной системе) на ленту в выходном устройстве.

Лента, на которой записывается результат вычислений, движется со скоростью программной ленты и поэтому запись результата не вызывает замедления работы машины.

Результат, записанный на ленту в двоичной системе, переводится в десятичную и отпечатывается на бумаге. Устройство, предназначенное для этого, не связано с машиной и работает с относительно небольшой скоростью; к выходному устройству относится все сказанное выше о входном устройстве.

Общая электрическая схема АЦВМ показана на рис. 3. (Схема опущена. — Прим. авт.). Для упрощения схемы в цепочках счетчиков и клапанных устройств показаны только крайние, а среднее заменены точками.

В интерполяторе показан только один программный барабан и одна таблица. Подробное описание схемы отдельных узлов дается ниже.

Общая схема АЦВМ достаточно сложна, однако она составлена из нескольких типовых простых схем: бинарных счетчиков, работающих по принципу «включено-выключено», клапанных устройств, триггеров и т. д. Больше всего в схеме «клапанных устройств». Если клапанные устройства составлять из электронных ламп, то общее число электронных ламп в машине существенно увеличивается. «Клапанные» лампы составляют 70 % об общего количества ламп.

Учитывая это обстоятельство, мы предусмотрели возможность замены электронных ламп в клапанных схемах более простыми элементами. Возможность такой замены следует из таблицы № 2, где показано соответствие между различными релейными элементами. Из этой таблицы видно, что клапанные схемы могут быть реализованы не только с помощью многоэлектродных ламп, но также с помощью магнитных и выпрямительных схем. Хотя постоянная времени магнитных схем значительно больше, чем у электронных, тем не менее, при использовании повышенной частоты и, если учесть, что скорость программирования не может быть очень большой, магнитные схемы могут быть применены в целом ряде мест. Не предрешая сейчас места применения тех или иных схем (магнитных или выпрямительных) в качестве клапанных устройств, мы предполагаем, что большая часть клапанных устройств может быть выполнена по таким схемам. Не останавливаясь на преимуществах и недостатках релейных элементов, приведенных в таблице № 2, заметим, что замена электронных ламп в клапанных устройствах значительно упрощает конструкцию, увеличивает надежность и долговечность, улучшает эксплуатационные качества машины.

Особенно перспективным для клапанных схем является применение кристаллических диодов (выпрямителей). К сожалению, производство этих элементов у нас пока не налажено. Однако можно не сомневаться, что это производство будет освоено, т. к. кристаллические диоды находят широкое применение для других целей в важнейших областях современной радиотехники и прежде всего в радиолокации.

Миниатюрные размеры кристаллических диодов, их пригодность для очень высоких частот, отсутствие накаленного катода, с которым связаны ограниченный срок службы и большой расход энергии, выделяющейся в виде тепла, позволит осуществить в высшей степени компактные и дешевые вычислительные блоки, годные не только для стационарных, но и для передвижных устройств. Последнее крайне важно для военных применений.

Общее количество электронных ламп в чисто электронном варианте машины 3500, а при замене клапанных устройств на магнитные реле и схемы из выпрямителей элементов, число электронных ламп 1000. (Оставшиеся разделы отчета не публикуются. — Прим. авт.)

История вычислительной техники в лицах - i_110.jpg

Авторское свидетельство № 10475

Еще через два месяца были составлены «Проектные соображения по организации лаборатории при Институте точной механики и вычислительной техники АН СССР для разработки и строительства автоматической цифровой вычислительной машины» (см. Приложение 12). Оба документа по праву могут считаться первыми страницами истории развития цифровой электронной вычислительной техники в СССР.

Напомним, что была середина 1948 года, и А.С.Лебедев еще не приступил к разработке МЭСМ («Быстродействующими электронными счетными машинами я начал заниматься в конце 1948 г.», — напишет он позднее).

На Западе разработки подобных машин велись в основном в США (десять машин), в Англии (одна), во Франции (одна). Поскольку машины

разрабатывались в основном для военных целей, публикации по ним были весьма немногословны. Большинство машин создавалось на электромеханических реле, а не на электронных лампах.

Даже беглое ознакомление с отчетами показывает обстоятельность проработки поставленной задачи. Можно только удивляться, как удалось выполнить такую, по тем временам непомерно трудную, научно-инженерную разработку и составить аван-проект электронной цифровой вычислительной машины с программным управлением, который иначе, как классическим, назва% нельзя.

При внимательном чтении проекта убеждаешься, что Брук и Рамеев вплотную подошли к реализации принципа хранимой в памяти программы. Они осуществили его технически (в аван-проекте), предусмотрев запись программы в памяти (на ленте), выдачу результатов вычислений на такую же ленту и ввод с нее полученных чисел снова в машину для последующих вычислений. Иначе говоря, была обеспечена возможность обработки команд в арифметическом устройстве машины (что и ставится в заслугу Джона фон Неймана и С.А. Лебедева).

79
{"b":"134334","o":1}