Литмир - Электронная Библиотека
A
A

Как известно, вычислительная техника принадлежит к тем отраслям науки и техники, которые развиваются особенно быстро, поэтому вычислительные машины очень быстро морально стареют. Они становятся все более сложными, в связи с этим требуют значительного времени для разработки и освоения в серийном производстве.

Выход из этого положения, очевидно, нужно искать в унификации.

Унификация элементов, устройств и машин позволит сократить сроки разработки и освоения в производстве. Унификация входных языков, систем команд позволит сократить сроки внедрения и резко повысить эффективность использования вычислительных машин в народном хозяйстве.

Унификация даст возможность сократить номенклатуру и увеличить количество изделий вычислительной техники, окажется целесообразной организация специализированных производств для выпуска унифицированных элементов, узлов и устройств, что даст возможность повысить качество изготовления и снизить стоимость.

Ограниченный типаж машин облегчит условия технической и математической эксплуатации большого парка машин (обеспечение запасными частями, обучение кадров обслуживающего персонала и программистов, модернизация машин и т. д.).

Ограниченный набор вычислительных машин и устройств различной производительности и назначения, могущих обмениваться информацией, позволяет создавать крупные системы для переработки информации, состоящие из многих машин, соединенных линиями связи. Различные ступени такой системы могут быть оборудованы машинами соответствующей производительности и сложности.

Все, что представлено в аваппроекте, базируется на реальных ОКР, серийно выпускаемых или осваиваемых, узлах и механизмах и освоенных технологических процессах.

Универсальность устройств, из которых составлены машины, гибкая блочная структура, позволяющая в широких пределах менять комплектность машин как по количеству, так и по типам устройств, возможность замены одних устройств другими с лучшими параметрами, добавление новых устройств, наличие развитой системы прерывания и связанная с этим возможность одновременной работы многих устройств, гибкая система команд, приспособленная к требованиям автоматизации программирования и многопрограммной работы, возможность объединения машин в системы, применение полупроводниковых приборов делает машины, представленные в аван-проекте, достаточно морально устойчивыми и ставит их на уровень наиболее распространенных зарубежных машин.

Наряду с введением новых принципов, перечисленных выше, при разработке обращалось особое внимание на технологичность конструкций.

Разработанные модульные схемные элементы, из которых построены все устройства и машины, рассчитаны на специализированное производство с использованием механизированных процессов, имеют малую номенклатуру простых схем и типономиналов деталей. Полупроводниковые приборы используются без отбора и без дополнительных, к действующим ТУ, требований. В конструкции узлов, блоков и устройств также учтены требования технологичности, связанные с необходимостью их крупносерийного производства.

Для сравнительно сложных машин и систем, рассмотренных в аван-проекте, одним из важнейших вопросов является вопрос надежности, поэтому повышению надежности при разработке обращалось особое внимание и во всех случаях, когда это оказывалось возможным, параметры надежности определялись и регламентировались.

… Разработка и освоение в производстве машин, рассмотренных в аван-проекте, может явиться переходным этапом в разработке универсальных вычислительных машин на микроминиатюрных элементах и может существенно сократить сроки появления нового поколения машин.

Для всех элементов, узлов, устройств и машин, рассмотренных в аван-проекте, приводятся проекты технических заданий на разработку, содержание которых дополняет информацию, имеющуюся в кратких описаниях.

Приложение 15

Вычислительная машина «Сетунь» Московского Государственного университета

Общая характеристика машины

Вычислительная машина «Сетунь» представляет собой автоматическую цифровую машину, предназначенную для решения научно-технических задач. Это одноадресная машина последовательного действия с фиксированным положением запятой.

Особенностью машины в математическом отношении является использование троичной системы счисления с коэффициентами 1, 0, -1.

В инженерном отношении машина примечательна тем, что в качестве основного элемента схем в ней применен магнитный усилитель с питанием импульсами тока. Такой усилитель состоит из нелинейного трансформатора с миниатюрным ферритовым сердечником и германиевого диода. Необходимые для реализации троичного счета три устойчивых состояния получаются с помощью пары усилителей. Общее число усилителей в машине — около четырех тысяч. Электронные лампы использованы в машине для генерирования импульсов тока, питающих магнитные усилители, и импульсов записи на магнитный барабан. Полупроводниковые триоды применены в схемах, обслуживающих матрицу запоминающего устройства на ферритовых сердечниках и в усилителях сигналов, считываемых с магнитного барабана.

Внутренние устройства машины работают на частоте 200 кГц, выполняя основные команды со следующими затратами времени: сложение — 180 мксек, умножение — 325 мксек, передача управления — 100 мксек.

Длина слова в арифметическом устройстве машины — 18 троичных разрядов. Команда кодируется полусловом, т. е. девятью разрядами. В запоминающем устройстве каждая пара полуслов, составляющая полное слово, и каждое полуслово в отдельности наделены независимыми адресами. Число, представленное полусловом, воспринимается арифметическим устройством как 18-разрядное с нулями в младших разрядах.

Оперативное запоминающее устройство машины, выполненное на ферритовых сердечниках, обладает емкостью в 162 полуслова.

Запоминающее устройство на магнитном барабане вмещает 2268 полуслов. Обмен между барабаном и оперативным запоминающим устройством производится группами по 54 полуслова. Предполагается ввести дополнительное запоминающее устройство на магнитной ленте и увеличить емкость барабана до 4374 полуслов.

Ввод данных в машину производится с пятипозиционной бумажной перфоленты посредством фотоэлектрического считывающего устройства, а вывод на перфоленту и печать результатов — на стандартном рулонном телетайпе. Ввод и вывод информации осуществляется также группами по 54 полуслова.

В арифметическом устройстве машины «Сетунь» 18-разрядное троичное слово рассматривается как число, в котором запятая расположена между вторым и третьи разрядами. Это число можно выразить формулой

История вычислительной техники в лицах - i_144.jpg

Диапазон чисел в арифметическом устройстве составляет -4,5 =< х =<+4,5 при абсолютной погрешности |дх| < 0,5е-16.

Число считается нормализованным, если оно заключено в интервале 0,5 х 1,5 или равно нулю. Порядок нормализованного числа изображается пятью старшими разрядами полуслова, хранящегося в запоминающем устройстве по отдельному адресу.

Девять разрядов полуслова, представляющего команду, распределены следующим образом: пять первых разрядов составляют адрес, три разряда — код операции, девятый разряд — признак модификации адреса. Если в этом разряде стоит 0, то команда выполняется без изменения адреса, если 1, то к адресу прибавляется число, находящееся в регистре модификации, если -1, то это число вычитается из адреса. Особое значение имеет младший (пятый) разряд адреса: у адреса полного слова в этом разряде -1, у адреса старшего полуслова 0, у адреса младшего полуслова 1.

В командах, относящихся к магнитному барабану или к устройствам ввода и вывода, первый разряд указывает, какая треть матрицы должна использоваться

для записи (считывания) передаваемой информации. Остальные четыре разряда адресной части команды либо обозначают номер зоны на барабане, либо используются для конкретизации команды: ввод или вывод. В функциональном отношении машина разделяется на шесть устройств:

119
{"b":"134334","o":1}