Межмолекулярная водородная связь – водородная связь, образующаяся между атомом водорода одной молекулы и атомом неметалла другой молекулы.
13. Превращение энергии при химических реакциях
Химическая реакция – превращение одного или нескольких исходных веществ в другие по химическому составу или строению вещества.
По сравнению с ядерными реакциями общее число атомов и изотопный состав химических элементов при химических реакциях неизменны.
Виды химических реакций:
1) смешение или физический контакт реагентов;
2) нагревание;
3) катализ;
4) фотохимические реакции (с участием света);
5) электродные процессы;
6) механохимические реакции;
7) радиационно-химические реакции;
8) плазмохимические реакции.
Основные типы химических реакций:
1) соединения: 2Cu + O2 = 2CuO;
2) разложения: 2HgO = 2Hg + O2;
3) замещения: Fe + CuSO4 = FeSO4 + Cu;
4) обмена: NaCl + H2SO4 = НСl + NaHSO4.
Химические реакции характеризуются физическими проявлениями:
1) поглощение и выделение энергии;
2) изменение агрегатного состояния реагентов;
3) изменение окраски реакционной смеси и др.
Выделение или поглощение энергии происходит в виде теплоты. Это позволяет судить о наличии в веществах определенного количества некоторой энергии (внутренней энергией реакции).
При химических реакциях происходит освобождение части энергии, содержащейся в веществах, это носит название теплового эффекта реакции, по которому можно судить об изменении количества внутренней энергии вещества.
У ряда химических реакций можно наблюдать поглощение или выделение лучистой энергии. В этих случаях внутренняя энергия через теплоту превращается в излучение (горение). Существуют также процессы в которых внутренняя энергия сразу превращается в лучистую (лю-минисценция).
В химических реакциях, протекающих с взрывом, внутренняя энергия превращается в механическую, причем частично сразу, частично переходя изначально в теплоту.
Во время химических реакций происходит взаимное превращение энергий – внутренней энергии веществ в тепловую, лучистую, электрическую и механическую, и наоборот.
Экзотермические химические реакции характеризуются выделением энергии во внешнюю среду. Эндотермические – поглощением энергии.
В физических процессах вещества не изменяют своих свойств, может измениться внешняя форма или агрегатное состояние. В химических процессах образуются новые вещества с другими свойствами. При ядерных реакциях в атомах обязательно происходят трансформации электронной оболочки.
14. Цепные реакции
Существуют химические реакции, в которых взаимодействие между компонентами происходит довольно просто. Существует весьма обширная группа реакций, протекающих сложно. В этих реакциях каждый элементарный этап связан с предыдущим, без выполнения которого дальнейшая реакция невозможна. В таких реакциях образование продукта реакции являет собой результат цепи элементарных этапов реакции, что называется цепными реакциями, которые проходят при участии активных центров – атомов, ионов или радикалов (осколков молекул).
Радикал – осколок молекулы, имеющий неспаренные электроны и проявляющий высокую реакционную активность (H, Cl, O, OH, CH3).
При взаимодействии активных центров с молекулами исходных компонентов происходит образование продуктов реакции и новых активных частиц, способствующих новому этапу взаимодействия. Активные центры способствуют и создают цепи последовательных превращений веществ.
В качестве примера цепной реакции можно привести реакцию синтеза хлористого водорода:
Эту реакцию провоцирует свет. Молекула хлора поглощает квант лучистой энергии hv и приходит в возбуждение, то есть атом в ней начинает энергично колебаться. Когда энергия колебаний превышает энергию связи, то происходит распад молекулы (фотохимическая диссоциация):
Обрыв цепи – окончание цепи, характеризующееся соударением двух активных частиц и одной неактивной, результатом которой является образование молекулы и унос выделившейся энергии неактивной частицей.
Цепные реакции делятся на:
1) неразветвленные цепные реакции;
2) разветвленные цепные реакции.
Неразветвленная цепная реакция характеризуется тем, что при каждом элементарном взаимодействии один активный центр образует молекулу продукта реакции и один новый активный центр. Разветвленная цепная реакция характеризуется тем, что по ходу взаимодействия свободного радикала с молекулой исходного реагента происходит образование нескольких новых активных центров, одни из которых дают начало новым активным центрам, а другие продолжают старую цепь.
Пример разветвленной цепной реакции – реакция образования воды из простых веществ:
Теория разветвленных цепных реакций была выдвинута Н.Н. Семеновым в 20-х годах XX века при изучении кинетики разнообразных процессов. Теория цепных реакций является научной основой для отраслей техники. Ядерные цепные реакции тоже относятся к цепным процессам.
15. Общие свойства неметаллов
Исходя из положения неметаллов в периодической системе Менделеева, можно выявить свойства для них характерные. Можно определить количество электронов на внешнем энергетическом подуровне, местоположение неметаллов в конце малых и больших периодов, число электронов на внешнем подуровне соответствует номеру группы. В периоде идет возрастание способности присоединять электроны, а в группе это свойство можно наблюдать по мере уменьшения радиуса (в периоде снизу вверх).
Для неметаллов характерно свойство присоединять электроны, проявлять окислительные свойства. Наиболее они выражены у элементов VI и VII групп. Самый сильный окислитель – фтор.
Окислительные свойства неметаллов возрастают в последовательности:
Фтор никогда не проявляет восстановительных свойств. Другие неметаллы и вещества, им соответствующие, могут проявлять восстановительные свойства, но они слабее, чем у металлов.
Восстановительная способность неметаллов увеличивается от кислорода к кремнию в ряду:
Так, хлор напрямую не взаимодействует с кислородом, но можно получить оксиды хлора (Cl2O, ClO2, Cl2O7), в которых хлор проявляет положительную степень окисления. Азот при высоких температурах вступает в реакцию с кислородом, выказывая восстановительные свойства:
Сера проявляет как окислительные, так и восстановительные свойства:
S + O2 = SO2 – окислительные свойства серы;
S + H2 = H2S – восстановительные свойства серы.
В нормальных условиях неметаллы:
1) газы (водород, фтор, хлор, кислород, азот и благородные газы);
2) жидкость (бром);
3) твердые вещества (все остальные).
Из-за разницы строения кристаллической решетки свойства неметаллов отличаются друг от друга.
C, B, Si – немолекулярное строение – атомная кристаллическая решетка.
F2, O2, Cl2, Br2, N2, I2, S8, P4 – молекулярное строение – молекулярная кристаллическая решетка.