Литмир - Электронная Библиотека
Содержание  
A
A

Почему на Солнце нет дейтерия?

Ядро атома дейтерия, одного из изотопов водорода, состоит из протона и нейтрона. Дейтерий не может существовать при высоких температурах, которые наблюдаются в недрах звезд. Уже при температуре 500 000 градусов ядра дейтерия могут взаимодействовать с ядрами водорода. В результате такой реакции образуется изотоп гелия. Дейтерий встречается в природе в небольших количествах: его можно найти, например, в межзвездном веществе, из которого образовались все звезды. При рождении Солнца дейтерий тоже должен был войти в его состав, поскольку следы этого изотопа водорода наблюдаются и на Земле. Так, например, в океанской воде на каждые 5000 обычных атомов водорода встречается один атом дейтерия.

Однако этот изотоп отсутствует в солнечной атмосфере. Это не удивительно, поскольку из нашей компьютерной модели следует, что во внешних слоях Солнца дейтерия просто не может быть. Причиной этого является конвекция. Каждый атом дейтерия на внешней поверхности Солнца рано или поздно окажется в результате конвективного перемешивания у дна конвективной зоны. В этой области температура приближается к одному миллиону градусов. Как только атом дейтерия попадет в эту область, он при столкновении с ядром водорода превратится в изотоп гелия. За время, прошедшее с момента возникновения Солнца, весь дейтерий должен был разрушиться. Даже если сегодня дейтерий попадет на Солнце откуда-нибудь из космического пространства, то через два или три года атомы дейтерия окажутся во внутренних, горячих слоях Солнца и превратятся в атомы гелия.

Почему на Солнце мало лития?

Наша компьютерная модель не может объяснить всех фактов. Когда астрономы изучали химический состав солнечной поверхности, то оказалось, что на Солнце чрезвычайно редко встречается (по сравнению с концентрацией на Земле) еще один элемент: литий. Этот элемент относится к числу наиболее легких в периодической системе: ядро атома лития состоит из трех протонов и четырех нейтронов. Такие атомы встречаются на Солнце крайне редко. По сравнению с его распространенностью на Земле, а также по сравнению с концентрацией в метеоритном веществе, которое попадает на Землю из мирового пространства, один килограмм солнечного газа содержит в 100 раз меньше лития. Может быть, этот элемент тоже разрушается при высоких температурах в нижней части конвективной зоны?

Действительно, литий может поглощать протон и распадаться на два атома гелия, как показано на рис. 5.3. Но температура в один миллион градусов, которая наблюдается в нижней части конвективной зоны, недостаточна для этой реакции. Разрушение лития происходит существенно глубже, примерно при температуре три миллиона градусов. Во всех компьютерных моделях, существующих к настоящему времени, конвективная зона не проникает ниже слоя с температурой один миллион градусов. Поэтому наша модель не может объяснить малое содержание лития на Солнце. Может быть, литий отсутствовал с самого начала? Это чрезвычайно маловероятно. В настоящее время считается, что Солнце, планеты и метеориты возникли из одного и того же вещества, которое первоначально имело один и тот же химический состав. Мы еще вернемся к этому вопросу, когда будем обсуждать возникновение звезд. Куда же девался литий на Солнце? Как объяснить этот парадокс?

100 миллиардов солнц: Рождение, жизнь и смерть звезд - img_27.jpeg

Рис. 5.3. При температурах около трех миллионов градусов атомы лития превращаются в звездных недрах в атомы гелия при участии ядер водорода.

Выход из положения есть: в промежуток времени между образованием звезд и началом ядерных реакций превращения водорода в гелий конвективная зона на Солнце проникала существенно глубже, чем теперь. Она достигала областей с температурами по меньшей мере в три миллиона градусов. В это время большая часть лития из внешних слоев Солнца могла проникнуть в глубину и разрушиться. К этому вопросу мы еще вернемся в гл. 12. Прежде мы должны узнать, что было до возникновения «молодого» Солнца? Теперь продолжим наше изучение стареющего Солнца, а годы его юности рассмотрим позже.

Судьба звезд, подобных Солнцу, после полного выгорания водорода, а также путь развития, показанный на рис. 5.1, были изучены в 50-е годы. При решении этих задач впервые широко использовались электронные вычислительные машины. Прежде чем рассмотреть полученные данные, я хотел бы отвлечься и совершить небольшой экскурс в историю, с которой у меня связаны некоторые личные воспоминания.

1955 г. — прорыв в область красных гигантов

В этом году была опубликована работа двух знаменитых астрофизиков своего времени. Эта работа была столь объемна, что ее не удалось напечатать в обычном номере «Астрофизического журнала». Она была опубликована в серии дополнительных выпусков. Одним из ее авторов был Фред Хойл. Хойл в это время занимал в Кембридже кафедру Эддингтона и уже написал много важных астрофизических работ, в том числе о возникновении химических элементов в недрах звезд. Кроме того, в свободное время он писал научно-фантастические романы. Его книга «Черное облако» была переведена на многие языки мира. На немецком радио по этой книге была даже поставлена радиопьеса. Другим автором вышедшей в «Астрофизическом журнале» работы был Мартин Шварцшильд. Когда умер его отец, астроном Карл Шварцшильд о нем речь пойдет позже, — Мартину было всего четыре года. Уже мальчиком он интересовался астрономией. Позже Шварцшильд вспоминал, что прежде чем избрать карьеру астронома, он долгое время мечтал стать молочником. Мартин Шварцшильд говорил, что он стал астрономом, как и его отец, только потому, что у него не хватило оригинальности выбрать другую профессию. Он получил степень доктора в Гёттингенском университете в 1935 г. Говорят, что семьи Шварцшильдов и Ротшильдов когда-то жили в одном и том же переулке Франкфуртского гетто. Поэтому для юного астронома было жизненно важным как можно быстрее покинуть Третий рейх. Его брат, оставшийся тогда в Германии, вынужден был позже покончить жизнь самоубийством. Через Норвегию Мартин Шварцшильд попал в США, а после войны стал профессором в Принстоне.

В послевоенные годы в группе Шварцшильда в Принстонском университете была начата работа по конструированию моделей строения звезд главной последовательности. Сотрудники Шварцшильда попытались изучить, что происходит со звездами, когда в их недрах кончается водород и прекращается ядерная реакция образования гелия. В 1955 г. была успешно закончена большая работа, в которой впервые удалось рассчитать, как звезды главной последовательности постепенно превращаются в красные гиганты.

В те годы астрофизики впервые начали широко применять в своих расчетах вычислительные машины. Хойлу и Шварцшильду нужен был компьютер, чтобы смоделировать процесс развития звезд. Немного позже и у меня возникла такая необходимость.

Осенью 1957 г. мы со Штефаном Темешвари (1915–1984) ночами просиживали на Беттингерштрассе в Гёттингене у вычислительной машины G2. Так назывался компьютер, сконструированный и собранный Хайнцем Биллингом и его сотрудниками в Физическом институте им. Макса Планка. В те времена вычислительную машину еще нельзя было просто купить в магазине, научные сотрудники сами изготовляли компьютеры. Сегодня обычный настольный компьютер очень часто обладает более широкими возможностями, чем любая машина, которая в те времена занимала целую комнату и работала на лампах. Людвиг Бирман, который в то время руководил астрофизическим отделением института, предложил нам с помощью этой машины решить уравнения Хойла и Шварцшильда. При этом мы должны были использовать придуманный нами улучшенный способ расчета.

Если вспомнить, как мы тогда работали, и сравнить с сегодняшними методами исследований, то станет ясно, какие произошли огромные изменения. Чтобы получить модель внутреннего строения звезды, надо было задать пробные значения светимости и температуры поверхности, а затем шаг за шагом двигаться от внешних слоев звезды ко внутренним. Когда расчет подходил к центру звезды, требовалось проверить, имеют ли наши решения смысл, или, говоря на языке математики, отвечают ли они внутренним граничным условиям. После этого надо было повторять весь расчет снова, используя улучшенные значения для светимости и температуры поверхности и надеясь, что на этот раз внутренние граничные условия будут удовлетворяться лучше. Интегрирование от поверхности к центру звезды необходимо было многократно повторять до тех пор, пока не получалось разумное решение. Чтобы получить каждое решение, мы совершали целое «путешествие» к центру звезды. Оно продолжалось пять часов, и можно было только надеяться, что вычислительная машина будет работать все это время без ошибок. Иначе приходилось все начинать сначала. Сегодня вычислительная машина того же института (которая, кстати сказать, установлена в Мюнхене) получает окончательное решение в течение нескольких секунд. Такая скорость решения задачи объясняется не только появлением новых мощных компьютеров, это прежде всего заслуга группы исследователей из Беркли.

19
{"b":"132758","o":1}