Литмир - Электронная Библиотека
Содержание  
A
A

Интересно, что П. П. Аносов понимал эти особенности технологии плавки булата. Он писал: «Искусство мастера в сем случае состоит в том, чтобы остановить работу в то мгновение, когда последний кусочек обсечков начинает расплавляться…» И далее: «При разбитии медленно охлажденных в печи тиглей сплавки казались как бы не совершенно расплавленными, ибо куски железа в некоторых местах сохранили первоначальную форму». В свете новой теории булатного узора эти замечания приобретают глубокий смысл.

Так как прекращение плавки у П. П. Аносова происходило в тот момент, когда в жидкость погружались твердые частицы железа, то последующее понижение температуры при охлаждении сплава в тигле приводило к кристаллизации высокоуглеродистой стали на имеющихся частицах железа, как на готовых центрах. Охлаждение стали в тигле, в котором она плавилась, как бы фиксировало полученную при плавке неоднородность. Недаром на основании своих опытов П. П. Аносов полагал, что переливание из тигля в изложницу порти г сталь.

Более того, по его наблюдению медленное охлаждение стали в тигле способствовало развитию кристаллизации и образованию узоров. Таким образом, процесс плавки и кристаллизации стали у П. П. Аносова неизбежно обусловливал крайнюю химическую, а следовательно, и структурную неоднородность слитка. Деформация при ковке этой неоднородной структуры и являлась причиной булатного узора.

К сожалению, на перечисленные особенности технологии производства булатной стали не обратил никакого внимания ни один из исследователей работ П. П. Аносова. Не указывал на них также никто из златоустовских мастеров, которые позже плавили булатную сталь. Естественно, что сам П. П. Аносов, не владея современными методами исследования металлов, не мог должным образом оценить степень влияния приведенных выше, на первый взгляд второстепенных, факторов на рисунок булата и его свойства.

После П. П. Аносова производство настоящих булатных клинков на Златоустовском заводе, как уже было отмечено, вскоре прекратилось. Д. К. Чернов объяснял это чрезвычайной сложностью процесса. «Производство узорчатой стали, — писал он, — требует усиленного постоянного наблюдения и преданности делу. В производстве булата очень ясно обнаружилось, какой капризный материал — сталь: малейшее несовершенство в процессе или нечистота материала — и уже сталь получается хуже, с мелким узором». А. П. Виноградов полагал, что причиной прекращения производства булата могло быть несоблюдение основного условия его получения: «прекращать процесс плавления, не дожидаясь полного растворения последних кусочков железа».

Действительно, П. П. Аносов, составив подробное описание приемов приготовления слитков булатной стали, не обратил должного внимания на момент прекращения плавки. Все последующие металлурги, плавившие булат после П. П. Аносова, не могли соблюсти это необходимое условие, обеспечивающее получение узорчатой стали. Поэтому они получали булат эпизодически и, как правило, с очень мелким узором.

Несмотря на то что А. П. Виноградов разработал оригинальную теорию, достаточно убедительно объясняющую природу химической и физической неоднородности булатной стали, его экспериментальные работы были посвящены главным образом вопросу формирования булатных узоров на основании так называемой «полосчатой структуры» низкоуглеродистой стали.

Металлургам давно известно, что после прокатки стали при низких температурах часто получают так называемую «полосчатую структуру», состоящую из участков перлита, чередующихся с видимыми простым глазом полосками чистого железа (феррита). А. П. Виноградов показал, что после низкотемпературной прокатки листовой стали, содержащей 0,30–0,35 % углерода, и продолжительного отжига ее при температуре 800–900 °C с последующим медленным охлаждением в печи полосчатая структура проявляется очень хорошо. Полосчатость в этом случае получается в виде параллельных слоев почти чистого феррита и углеродистой стали с 0,6–0,7 %, углерода. Такая структура стали, по утверждению автора, имитирует «мягкие булаты» Аносова.

Даже при небольшой деформации слоев полосчатой структуры они могут стать волнообразными плоскостями с различной кривизной волн, а главное — могут значительно отклоняться от параллельности к поверхности образца. При достаточной толщине слоев отшлифованные образцы могут давать видимую простым глазом картину разнообразных узоров, характерных для булата. Если такой образец мысленно разрезать плоскостями, параллельными основанию, то они, подобно горизонталям при проектировании холмистой местности на карту, должны образовывать узор. Если слои приближаются к параллельным плоскостям, но не параллельны плоскости шлифа, то получается муаровый рисунок; если же они изгибаются в виде холма или углубления — ониксовидный. Применяя специальные приемы деформации стали — надрубы, разнообразную насечку и осадку, — А. П. Виноградов получал почти все известные рисунки булата.

Несмотря на то что А. П. Виноградов впервые экспериментально показал приемы получения булатного узора и выдвинул убедительно обоснованную теорию, объясняющую природу неоднородности булатной стали, ему не удалось приготовить настоящих булатов на основе высокоуглеродистых сплавов, у которых бы после закалки сохранились узоры. Последнее обстоятельство послужило поводом к критике взглядов А. П. Виноградова.

С целью подтверждения своих предположений А. П. Виноградов провел ряд плавок, в ходе которых путем присадки кусков железа в жидкую ванну пытался создать условия для получения физически неоднородного металла; но результаты этих опытов не были настолько выразительными, чтобы убедить в его правоте. Поэтому видные металлурги считали, что «нерасплавленные кристаллы, очевидно, не являются условием, необходимым для создания неоднородности жидкости», и что теория А. П. Виноградова применима скорее к сварочному булату, чем к литому.

Вутцы XX столетия

Итак, А. П. Виноградов впервые разглядел в булатном узоре физическую неоднородность стали. Не может быть сомнений в том, что П. П. Аносов добивался крайней неоднородности слитка за счет недорасплавившихся частиц низкоуглеродистого железа. С позиций современной науки такую структуру можно назвать неравновесной. А как же в древности получали неравновесную структуру вутца?

П. П. Аносов был прав, предполагая, что древние мастера изготовляли булат в специальных горнах, позволяющих совмещать процессы восстановления руды, науглероживания железа и его сплавления. Частицы восстановленной железной губки, по всей вероятности, науглероживались с поверхности окисью углерода и превращались в высокоуглеродистую сталь, а может быть, даже в чугун. Вместе с тем сердцевина частиц сохранялась железной, ненауглероженной. Поскольку температура горна лежала между точками плавления железа и стали, то стальная оболочка частиц плавилась, и они соединялись в одно целое, образуя полусплавившийся слиток, макроструктура которого напоминала пирог с изюмом: зерна мягкого железа в окружении высокоуглеродистой стали.

Описанный выше способ получения неравновесной структуры слитка не единственный. Известно, что индийцы знали тигельный процесс задолго до европейцев. Они владели также сыродутным процессом приготовления железа, которое содержало не более одной-двух десятых процента углерода. Расплавить такое железо в тиглях они не могли. С другой стороны, они получали чугун, который легко плавился в тиглях, установленных в горн.

Железо — пластичный, упругий и вязкий металл, но недостаточно твердый. Чугун — твердый материал, но совсем не пластичный, хрупкий, его нельзя деформировать. Разве не напрашивается мысль: смешать кусочки чугуна и железа и расплавить их в тигле?

Теперь представим себе, что смесь кусочков чугуна и железа помещена в тигель и нагревается до температуры 1350–1380 °C. В этом случае чугун в начале процесса плавился, а мягкое железо оставалось твердым. По мере нагревания сплава углерод из чугуна диффундировал (перемещался) в железо, чугун становился все более и более тугоплавким и в конце концов вся масса металла затвердевала. Естественно, что готовый сплав и в этом случае получался неоднородным, состоящим из двух фаз: высокоуглеродистой стали, в которую превратился чугун, отдавая углерод, и частиц железа, поверхность которых науглерожена.

26
{"b":"130810","o":1}