Сигнальные радиозакладки (размещаемые в средствах вычислительной техники, модемах и других устройствах), передающие информацию о режимах работы (паролях и проч.) и обрабатываемых данных, представляют собой электромагнитные ретрансляторы сигналов от работающих компьютеров, принтеров, другой оргтехники. Сами сигналы могут быть аналоговыми или цифровыми. Такие специальные радиозакладки, соответствующим образом закамуфлированные, обладают высокой степенью физической скрытности. Единственным отличительным их признаком при этом является наличие радиоизлучения. Их можно выявить также при осмотре модулей оргтехники специалистами, хорошо знающими их аппаратную часть.
Самым информативным является сигнал экранного отображения на мониторе компьютера. Перехват информации с экрана монитора также может осуществляться с применением специальных телекамер. Профессиональная аппаратура перехвата побочных излучений от компьютера используется для перехвата излучений от персональной ЭВМ и репродукции изображений монитора. Известны также микропередатчики клавиатуры, предназначенные для негласного получения информации обо всех операциях на клавиатуре компьютера (коды, пароли, набираемый текст и др.).
Поиск электромагнитных излучений должен обеспечить достоверное обнаружение всех сигналов как на частотах гармоник, так и на частотах паразитной генерации и нелинейных преобразований, измерение их параметров и расчет требуемых значений защищенности.
Для поиска побочных электромагнитных излучений применяют регистратор побочных излучений. В роли такого регистратора используют специализированный высокочувствительный анализатор спектра радиочастот с возможностью многоканальной, в том числе корреляционной обработки спектральных составляющих и визуальным отображением результатов.
Измерения побочного электромагнитного излучения проводят с помощью антенного оборудования (селективных вольтметров, измерительных приемников, анализаторов спектра). Селективные вольтметры (нановольтметры) применяют для определения величины напряженности электрического и магнитного поля. Измерительные приемники сочетают в себе лучшие характеристики селективных вольтметров (наличие преселектора) и анализаторов спектра (визуальное представление панорамы анализируемого диапазона частот), но они довольно дорого стоят. Анализаторы спектра по функциональным возможностям конкурируют с измерительными приемниками, но ряд метрологических характеристик из-за отсутствия преселектора у них хуже. Зато их цена в 4–5 раз ниже цены аналогичного измерительного приемника.
Детектор для анализа побочных электромагнитных излучений (ПЭМИ) может быть пиковым (показывает амплитуду сигнала), линейным (мгновенную реализацию сигнала в момент его измерения), среднеквадратичным (передает мощность сигнала) и квазипиковым (не имеет в своей основе никакой физической величины и предназначен для унификации измерения радиопомех для задач исследования на электромагнитную совместимость). Корректно проводить измерения только с помощью пикового детектора.
Для прослушивания сигнала побочного электромагнитного излучения могут использоваться АМ– и FM-демодуляторы. Для прослушивания сигнала, имеющего потенциальный вид кодирования (например, ПЭМИ монитора), необходимо выбрать АМ-демодулятор, а для прослушивания сигналов с другим видом кодирования (например, ПЭМИ накопителей на жестких магнитных дисках) необходим FM-демодулятор (плохо демодулирует сигналы с потенциальным кодированием). Практика показала, что все сигналы с FM-модуляцией обязательно имеют паразитную АМ-модуляцию и могут быть прослушаны с помощью АМ-демодулятора.
Выделяют следующие способы решения проблемы электромагнитного излучения техническими мерами:
1) экранирование – окружение либо источника, либо рецептора кожухом из сплава металла. При выборе оборудования предпочтение следует отдавать кабелям, имеющим экранирующую оболочку (коаксиальный кабель), волоконно-оптическим кабелям, которые не излучают электромагнитные помехи и невосприимчивы к ним. Экран при установке должен иметь плотный (лучше пропаянный) контакт с шиной корпуса, которая, в свою очередь, должна быть заземлена;
2) фильтрация – создание на пути распространения паразитных токов фильтров, устраняющих появление помех (снижающих их до допустимого уровня). Задачи обеспечения достаточной фильтрации в технических средствах могут реализовываться и отдельно от экранов. Кроме этого, предусматривается установка фильтров для исключения передачи помех по цепям электропитания, управления, контроля и коммутации (например, сетевой фильтр);
3) заземление – обеспечивает «стекание» образующихся на экранах, корпусе и других общесхемных соединениях технического средства паразитных токов в землю, исключая накопление потенциала до опасных пределов. Электрические соединения во всех точках контакта должны обеспечивать его минимальное сопротивление. При построении заземления необходимо свести к минимуму число общих проводников для технических средств и контуров в системе. При экранировании электрического поля на низких частотах все металлические элементы конструкции технических средств должны быть соединены с их корпусом (землей). Недостатки в цепях заземления, приводящие к появлению помех, проявляются в случае, если разная аппаратура заземляется общим проводником к шине заземления и в цепях заземления образуются замкнутые контуры.
Используемые схемы заземления подразделяют на три группы. Самый простой способ заземления – последовательное в одной точке, но ему соответствует наибольший уровень помех, обусловленный протеканием токов по общим участкам заземляющей цепи. Параллельное заземление в одной точке свободно от этого недостатка, но требует большого числа протяженных проводников, из-за длины которых трудно обеспечить малое сопротивление заземления. Многоточечная схема исключает недостатки первых двух вариантов, однако при ее применении могут возникнуть трудности в связи с появлением резонансных помех в контурах схемы. Обычно при организации заземления применяют гибридные схемы: на низких частотах отдают предпочтение одноточечной, а на более высоких частотах – многоточечной схеме.
Для создания системы эффективной защиты от негласного съема информации по техническим каналам рекомендуется провести ряд мероприятий. Следует подвергнуть анализу характерные особенности расположения зданий, помещений в зданиях, территорию вокруг них и подведенные коммуникации. Далее следует определить помещения, внутри которых циркулирует конфиденциальная информация, и учесть используемые в них технические средства. Осуществить такие технические мероприятия, как проверка используемой техники на соответствие величины побочных излучений допустимым уровням, экранирование помещения с техникой или этой техники в помещении, перемонтировать отдельные цепи (линии, кабели), использовать специальные устройства и средства пассивной и активной защиты.
5.10. Безопасность информационно-коммуникационных систем
Зависимость современного общества от информационных технологий настолько высока, что сбои в информационных системах способны привести к значительным инцидентам в «реальном» мире. Никому не надо объяснять, что программное обеспечение и данные, хранящиеся в компьютере, нуждаются в защите. Разгул компьютерного пиратства, вредоносные вирусы, атаки хакеров и изощренные средства коммерческого шпионажа заставляют производителей и пользователей программ искать способы и средства защиты.
Существует большое количество методов ограничения доступа к информации, хранящейся в компьютерах. Безопасность информационно-коммуникационных систем можно подразделить на технологическую, программную и физическую. С технологической точки зрения обеспечения безопасности, в информационных системах широко используются и «зеркальные» серверы, и двойные жесткие диски.
Обязательно следует использовать надежные системы бесперебойного питания. Скачки напряжения могут стереть память, внести изменения в программы и уничтожить микросхемы. Предохранить серверы и компьютеры от кратковременных бросков питания могут сетевые фильтры. Источники бесперебойного питания предоставляют возможность отключить компьютер без потери данных.