Все же идеи Вейсмана, как и взгляды других видных ученых конца прошлого века — Страсбургера, О. Гертвига, де Фриза, независимо от того, насколько близки они были к истине, не выходили за рамки более или менее правдоподобных гипотез. Одной умозрительной концепции (Ламарка) они противопоставляли другие, может быть, более тонкие, но остававшиеся результатом скорее чистой игры ума, чем точно поставленных и много раз подтвержденных опытов. И не случайно обо всех этих теориях в 1900 году Климент Аркадьевич Тимирязев сказал, цитируя Шекспирова Гамлета:
— Слова, слова, слова!..
Николай Вавилов в своей актовой речи именно этой фразой со ссылкой на Тимирязева оценивает умозрительные концепции, предшествовавшие переоткрытию законов Менделя. Но он считает, что идеи Вейсмана и других ученых сыграли важную роль в развитии науки: они подготовили почву для этого вторичного открытия.
«За короткий промежуток времени изменился резко и общий характер работы в генетических исследованиях. На место философского умозрительного направления, еще недавно царившего здесь, — подчеркивает Вавилов, — преобладающими становятся опыт и точное наблюдение».
Три ученых почти одновременно и независимо друг от друга, рассказывает Вавилов, пришли к результатам, полученным ранее Менделем, и тут же обнаружили его работу. Все трое: де Фриз, Корренс и Чермак — глубоко поняли важность небольшого труда августинского монаха и с интервалом в месяц один за другим прислали свои статьи в ведущий ботанический журнал того времени.
4
Наука двигалась вперед.
А между тем селекционеры все еще действовали вслепую. Даже самый простой метод селекции — искусственный отбор — научно не был обоснован. И получалось, что в одних случаях, произведя удачно отбор, селекционер получал новый ценный сорт, в других же отбор ежегодно повторяли на протяжении десятков лет, а толку никакого не было.
Датский ученый Иогансен, опираясь на законы Менделя, развил учение о чистых линиях. Он показал, что отбором можно выводить сорта из «популяций» — смеси сортов и их гибридов. Отобрав из популяции «нерасщепляющееся» растение и размножив его, селекционер получает сорт, «чистую линию». Дальнейший отбор в пределах чистой линии вести бессмысленно: наследственная основа всех растений одинакова, хотя они могут внешне отличаться, скажем, по крупности семян из-за неодинаковых условий в пределах поля.
Теория чистых линий — важный шаг в развитии генетики и селекции, подчеркивает Вавилов в своей актовой речи.
Но она же завела науку в тупик!
Получалось, что изменчивость в природе ограничена, что она имеет место лишь до того, пока отбор (искусственный или естественный) приведет к образованию чистых линий. В дальнейшем же развитие прекращается!
Так Иогансен «остановил» эволюцию.
Но эволюция — непреложный закон природы. Это давно уже признавало подавляющее большинство ученых. И они стали искать выход из тупика.
Впрочем, мы несколько сдвинули события. Теория чистых линий была опубликована в 1903 году, когда выход из тупика был уже найден.
5
Русский ученый академик С. И. Коржинский в 1899 году, а через два года после него более глубоко и обоснованно голландец Гуго де Фриз, рассказывает Вавилов, выдвинули мутационную теорию, по-новому объяснявшую процесс изменчивости и перекинувшую прочный мост между законами Менделя и дарвинизмом.
Гуго де Фриз обнаружил, что среди совершенно одинаковых особей некоторых растений очень редко, но неизменно появляются формы, резко отличные от исходных. Он нашел аналогичные свидетельства у ученых прошлого и заключил, что живым организмам свойственно иногда резко изменять свою наследственную природу. «Вот как возникают новые виды, роды, семейства!» — решил де Фриз после десятков лет кропотливых исследований.
Да, он ставил опыты десятки лет, начав их еще в восьмидесятые годы, и все же слишком поспешил с выводами!
Его теория, проливая свет на процесс изменчивости, блестяще подтверждала дарвиновское учение, он же поспешил противопоставить внезапные изменения (мутации) отбору.
— Значение отбора ограничено, — заявил де Фриз. — Эволюция идет путем резких скачков, мутаций.
Но позднее он изменил свое мнение. Он убедился, что чем резче мутация, тем меньше шансов для новой формы организма выжить в данных условиях. Иное дело — мутации мелкие, небольшие. Правда, и они чаще всего вредны для организма, за многие века приспособившегося к определенным условиям среды. В этих случаях изменившиеся растения также ожидает печальная участь. Но иногда, очень редко, небольшое изменение оказывается полезным. Организм совершенствуется, становится лучше приспособленным, чем его неизменившиеся сородичи, и естественный отбор закрепляет новую форму.
Этот дарвиновский смысл теории мутаций и подчеркивает Вавилов в своей актовой речи.
6
После вторичного открытия менделевских законов началось триумфальное шествие генетики «по жизни» — в самом прямом смысле слова.
Проводились тысячи экспериментов, подтверждавших справедливость этих законов на новых биологических объектах. Одновременно появились данные, уточнявшие картину, нарисованную Менделем. Было установлено, что многие признаки определяются не одной, а несколькими парами генов; соответственно картина расщепления описывалась более сложными математическими соотношениями, чем простое 3:1, что, впрочем, предсказывал сам Мендель. Было установлено, что многие признаки у растений и животных вовсе не перемешиваются как попало при «расщеплении» гибридов второго поколения, а сопутствуют друг другу. Так, белые глаза у плодовой мушки оказались определенно связанными с полом: от отцов признак белых глаз переходил только к дочерям. Вместе с тем было показано, что некоторые обычно «неразлучные» признаки иногда все же расходятся. (В редких случаях признак белых глаз переходил от отцов к сыновьям.)
Эти «странности» объяснил американец Томас Гент Морган, выдвинувший хромосомную теорию наследственности. Морган поставил перед собой задачу отыскать таинственные «наследственные задатки» в недрах живой клетки Правда, за всю свою долгую жизнь он не смог решить этой проблемы: она оказалась по силам лишь науке сегодняшнего дня. Но Морган указал, что гены сосредоточены в особых образованиях клеточного ядра — хромосомах, о чем, впрочем, догадывались и до него. Хромосомы видны под микроскопом в клетке в период ее деления. Эти микроскопические структуры хорошо окрашиваются различными красителями, отчего и получили свое название.
Очень уж примечательны эти частицы!
Каждому биологическому виду свойственно свое, строго определенное число хромосом.
При делении клетки каждая хромосома из окружающего материала создает свою точную копию, и в дочерних клетках оказывается столько же хромосом, сколько их было в родительской.
Число хромосом обычно четное, так что почти во всех клетках содержится их двойной набор.
В зрелых половых клетках (в отличие от остальных) набор хромосом одинарный. После оплодотворения, когда сливаются в одну женская и мужская половые клетки, что дает начало новому организму, парный набор хромосом восстанавливается.
Словом, было на что обратить внимание!
Разве случайно, что организм детеныша получает половину хромосом от матери и половину от отца?
Разве случайно, что при росте организма, когда клетки делятся, прежде всего создаются точные копии имеющихся в наличии хромосом, так что каждая новая клетка получает их готовый набор?
Разве случайно, что потом, при образовании у дочернего организма зрелых половых клеток с одинарным набором хромосом, пары, образованные отцовскими и материнскими хромосомами, обязательно расходятся в разные клетки?
Разве случайно, наконец, что при этом расхождении хромосомы одной пары никак не влияют на хромосомы других пар?