Глава 11 Модели звезд
В § 6 мы получили основные характеристики звездных недр (температура, плотность, давление), используя метод грубых оценок величин, входящих в уравнения, описывающие состояния равновесия звезд. Хотя эти оценки дают правильное представление о физических условиях в центральных областях звезд, они, конечно, совершенно недостаточны для понимания сходства и различия между разными звездами. Например, для решения важного вопроса, какая именно ядерная реакция (протон-протонная или углеродно-азотная) ответственна за излучение той или иной конкретной звезды, необходимо более совершенное знание условий в ее недрах. Наконец, остается пока не рассмотренной основная задача: каков физический смысл диаграммы Герцшпрунга — Рессела? Эта задача, как мы увидим ниже, теснейшим образом связана с проблемой эволюции звезд. Хотя запасы ядерной энергии в недрах звезд очень велики, все же их нельзя считать неисчерпаемыми. Рано или поздно (в зависимости от массы звезды) они подойдут к концу. Что будет при этом происходить со звездой? Как она будет менять свои свойства?
Чтобы понять связь между разными звездами и причины наблюдаемых различий между ними, надо хорошо знать мгновенное состояние разных звезд, как бы «моментальную фотографию» структуры их недр. Точно так же как реальные физические процессы можно представить как последовательность «квазистатических» состояний, очень медленный процесс эволюции звезды (обусловленный истощением запасов ее ядерного горючего) можно представить как последовательность ее равновесных конфигураций. Такие конфигурации, получаемые теоретическим, расчетным путем, носят название «звездных моделей».
Под «звездной моделью» понимается совокупность таблиц (или графиков), дающих «идеализированное» распределение плотности, температуры, давления, химического состава вещества звезды для разных глубин, выраженных в долях ее радиуса. Следует подчеркнуть, что такая модель отнюдь не тождественна реальной звезде. Все же хорошо рассчитанная модель, правильно учитывающая основные физические законы, определяющие структуру звезды, может (и должна!) давать в основном верное представление о свойствах вещества звездных недр. Было бы ошибочно считать, что расчет звездных моделей содержит в себе элемент произвола. Наоборот, он непрерывно и жестко контролируется в процессе самих вычислений. И, наконец, он после своего завершения должен находиться в полном согласии с наблюдаемыми свойствами «моделируемых» звезд. Например, если речь идет о расчете модели звезды главной последовательности, у рассчитанной модели должно выполняться соотношение «масса — светимость».
Если бы была возможность непосредственно наблюдать внутренние области звезд, не было бы надобности в построении их моделей. Ведь структуру туманностей, которые «видны насквозь», мы получаем непосредственно из оптических и радиоастрономических наблюдений. Увы, недра звезд скрыты от нас гигантской толщей звездного вещества и почти нет шансов «увидеть», что там происходит. Мы подчеркнули слово «почти», так как все-таки имеется одна возможность непосредственного наблюдения звездных недр, о которой было рассказано в § 9. Итак, построение звездных моделей есть процедура вынужденная, иначе мы не могли бы делать количественных выводов об основных тенденциях развития большей части вещества во Вселенной.
Как же рассчитываются звездные модели? Прежде всего основой таких расчетов являются физические законы, определяющие равновесную конфигурацию звезды. Об этих законах уже шла речь в § 6 и 7. Это, во-первых, условие гидростатического равновесия, которое должно выполняться для каждого элемента объема внутри звезды (см. формулу (6.1)). Во-вторых,— так называемое «условие лучистого равновесия», описывающее перенос излучения из недр звезды, к ее поверхности (см. уравнение (7.10)). Далее необходимо учитывать, как меняется непрозрачность звездного вещества в зависимости от изменения температуры и плотности, а также зависимость давления от плотности и температуры, т. е. «уравнение состояния». Для вещества «нормальных» звезд последнее описывается уравнением Клапейрона, а для белых карликов — формулой (10.1). Необходимо учитывать и очень сильную зависимость скорости выделения ядерной энергии от температуры (см. стр. 246). Кроме того, считаются заданными такие основные параметры «моделируемых» звезд, как их масса, светимость и радиус.
Ввиду сложности системы уравнений, описывающих состояние звезд, расчет модели не может быть сделан аналитически, т. е. по готовой, пусть даже очень громоздкой, формуле. Успех достигается только численным методом решения этих уравнений (являющихся, кстати, дифференциальными). Предполагается, что модель звезды сферически-симметричная, т. е. все характеристики какого-нибудь элемента ее объема (температура, плотность и пр.) зависят только от расстояния этого элемента от центра звезды. В чем же идея численного метода расчета? Представим себе, что звезда состоит из очень большого числа концентрических сферических слоев. В пределах каждого слоя (если он только выбран достаточно тонким) значения указанных характеристик можно считать постоянными. Зададим значения давления и температуры в центре звезды. Условия гидростатического равновесия позволят тогда найти давление на поверхности первой (самой внутренней) сферы. Далее, путем расчетов определяем, пользуясь формулой Клапейрона, температуру в центре. Затем, зная зависимость скорости ядерного энерговыделения от температуры и используя уравнение для переноса лучистой энергии (7.10), мы получим температуру на поверхности шаровой сферы, а затем, пользуясь формулой Клапейрона,— плотность. Такая процедура (как видим, довольно сложная!) позволяет по данным температуре, плотности и давлению в центре звезды получить те же основные характеристики на некотором относительно малом расстоянии от центра. После этого тем же методом процедура повторяется и получается значение характеристик звездного вещества, на поверхности второй сферы, радиус которой вдвое больше, чем у первой. Так, шаг за шагом, получается «разрез» всей звезды, т. е. значения основных характеристик ее вещества в зависимости от расстояния от центра. Для того чтобы расчет модели увенчался успехом, толщины воображаемых сфер, на которые разбивается звезда, должны быть достаточно малы. С другой стороны, конечно, непрактично делать их слишком маленькими, что привело бы к неоправданно большому увеличению объемов расчета. Практически количество таких сфер бывает порядка нескольких сотен, иногда даже нескольких тысяч.
Масса рассчитанной модели получается как результат суммирования «парциальных» масс, заключенных в пределах элементарных сфер. Учитывая «производство» термоядерной энергии в разных слоях, можно по окончании расчета получить теоретическую светимость звездной модели.
Раньше такие расчеты моделей выполнялись вручную, на арифмометрах. Однако последние три десятилетия расчеты моделей производятся преимущественно на электронных вычислительных машинах. Резкое увеличение «производительности труда», помимо облегчения работы вычислителя, позволило широко варьировать различные параметры, входящие в расчет, и выбирать из них те, которые дают разумные и непротиворечивые модели. В частности, условием непротиворечивости модели, дающей некоторые значения радиуса, массы и светимости звезды, является выполнение закона «масса — светимость», если речь идет о расчете модели звезды главной последовательности. Отчего же могут получиться в процессе расчетов модели, явно несоответствующие реальным звездам? В значительной степени это происходит из-за большой неуверенности в знании химического состава недр звезды, модель которой рассчитывается. Приходится при расчетах работать «методом проб и ошибок», отбрасывая такие предположения о химическом составе, которые приводят к явно несуразным результатам. Имеется и еще довольно специфическая причина расхождения между основными расчетными характеристиками модели звезды (т. е. ее массы, светимости и радиуса) и наблюдаемыми характеристиками соответствующей реальной звезды. Дело в том, что при некоторых условиях процесс переноса энергии в недрах звезды может менять свой характер. Например, перенос энергии путем лучеиспускания может смениться конвективным переносом. Это бывает по разным причинам. Так, если по мере погружения в глубину температура начинает расти довольно резко, лучеиспускание, возможности которого «ограничены», уже не в состоянии обеспечить транспортировку всей выделяющейся в недрах звезды энергии. Наступает неустойчивость, и доминирующим механизмом переноса энергии становится конвекция. Об этом речь шла уже в § 8. Поэтому в процессе вычислений, которые выполняются «шаг за шагом», следует внимательно следить и контролировать, как ведет себя механизм переноса энергии в строящейся модели звезды.