Литмир - Электронная Библиотека
Содержание  
A
A

*) В. М е у е r m a n n, Die Schwankungen unseres Zeitmasses. Ergebn. d. exakten Naturwissenschaften 7, 92 (1928).

При всех этих размышлениях мы отвлекались от того, что любые из рассматриваемых часов движутся вместе с Землей вокруг Солнца, а также участвуют в суточном вращении вокруг земной оси. Теория относительности учит, как вычислить требующуюся в связи с этим движением особую поправку; но при современной точности измерений эта поправка может не учитываться.

ГЛАВА 2

МЕХАНИКА

Вначале была механика. Как уже было упомянуто, учение о равновесии, статика, уходит далеко в древность. Ее возникновение обусловлено практическим значением, которое имеют для преодоления тяжелой физической работы рычаг, винт, наклонная плоскость и полиспаст. Греки развивали такие понятия, как удельный вес и центр тяжести. Вычисление центра тяжести у тела заданной формы было излюбленной задачей греков, решение которой из-за отсутствия исчисления бесконечно малых требовало особой остроты мышления.

Эта статика достигла своего высшего развития в законе возможных перемещений: образуют произведения сил на пути, пройденные их точками приложения в направлении действия этих сил; движение не наступает, если сумма этих произведений (взятых с правильными знаками) дает в результате нуль. Силы измеряют при этом весами; здесь, таким образом, постоянно имеют дело с действиями тяжести. Частным случаем является закон рычага; другой пример - правило Архимеда, согласно которому на всякое твердое тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. Века потребовались, чтобы приобрести к началу XVII века эти знания. Последний в ряду творцов статики - Симон Стевин (1548-1620), изучая равновесие тел на наклонной плоскости, благодаря гениальной интуиции неявным образом открыл разложение силы на составляющие, т. е. закон параллелограмма сил.

Схоластика считала непререкаемой истиной рассуждения Аристотеля (384-322 до н. э.) по вопросам механики, но для зарождающейся науки XVI столетия они были только большим препятствием, которое надо было преодолеть, чтобы успешно двигаться вперед.

Галилео Галилей (1564-1642) обосновал динамику, т. е., собственно, учение о движении тел; Христиан Гюйгенс (1629-1695) продолжал развивать динамику, а Исаак Ньютон (1643-1727) придал ей определенную законченную форму (в честь Ньютона обычно называют динамику ньютоновской). Наблюдения Галилея над падением тел с наклонной башни в Пизе начались в 1589 г. В 1638 г. вышло его главное произведение по механике «Discorsi e Dimonstrazioni mate-matichi intorno a duo nuove Scienze attenenti alla Mecanica e ai Movimento locali». «Philosophiae naturalis principia mathematica» Ньютона появились в 1687 г. Период создания динамики продолжался, таким образом, одно столетие.

Результат этого величественного творения человеческого духа содержится в двух законах. Первый закон утверждает, что произведение массы материальной точки на ее ускорение равно действующей на нее силе (ускорение и сила являются направленными величинами, векторами, и закон утверждает одинаковое направление для обоих). Вторым законом является закон равенства действия и противодействия: силы, с которыми две массы действуют друг на друга, равны по величине и противоположны по направлению.

Проанализируем формулировки обоих законов. Что такое ускорение - в основном уже объяснил Галилей, когда он простыми математическими средствами исследовал понятие изменяющейся скорости. Ньютон, который располагал созданным им самим и Готфридом Вильгельмом Лейбницем (1646-1716) исчислением бесконечно малых, мог облегчить себе задачу. Ускорение есть изменение скорости в единицу времени, производная скорости по времени и, следовательно, вторая производная по времени радиуса-вектора, проведенного из любого начала координат к материальной точке. Если известны результаты измерения координат и времени, то скорость и ускорение становятся также известными. Первый закон дает, следовательно, дифференциальное уравнение второго порядка для координат точки как функции времени; его интегрирование определяет путь и скорость, с которой этот путь будет пройден. Если нет никакой силы, ускорение равно нулю; движение происходит прямолинейно с постоянной скоростью, как этого требует закон инерции.

Второй закон показывает, что масса есть «инертная» масса. Если два тела получают взаимные ускорения, то последние по величине обратно пропорциональны их массам. При начальной скорости, равной нулю, скорости и пути, пройденные в одинаковые промежутки времени, также обратно пропорциональны массам. Геометрическое измерение пути позволяет, таким образом, отнести каждую массу к произвольно выбранной единице. Когда ускорения имеют противоположные направления, сумма из произведений массы на скорость остается неизменной; она равна нулю в частном случае, когда оба тела сначала были в покое. В связи с тем, что произведение массы на скорость называется импульсом, можно изложенные законы выразить в форме, принятой в настоящее время:

1) сила равна изменению импульса в единицу времени *);

2) в системе, не подверженной внешним влияниям и состоящей из двух или произвольно большого количества масс, общий импульс является постоянной величиной (закон сохранения импульса).

*) Уже Ньютон пользовался этой формулировкой.

В этих высказываниях в неявной форме заключается утверждение, что силы, с которыми два тела действуют друг на друга, не нарушаются третьим телом и что масса есть неизменяемое свойство тела.

Последнее утверждение принималось механикой с самого начала ее развития, так как взвешивания никогда не обнаруживали изменения массы. Одним из важнейших достижений химии, ставшей наукой в XVIII веке, было установление того, что при химических реакциях общая масса участников реакции остается постоянной. Заслуга установления этого положения принадлежит А. Лавуазье (1743-1794). Позднее, с 1895 по 1906 г., оно было подтверждено особо точными взвешиваниями Ганса Ландольта (1831-1910). В настоящее время мы рассматриваем постоянство массы только как приближение, конечно, совершенно достаточное для механики, химии и многих областей физики.

В опытах, на которых основывается динамика, силы измеряются взвешиванием - способом, применяющимся исстари до сих пор; если силы действовали не строго вертикально вниз, то применяли шнуры на роликах. Таким образом, понятие силы было экспериментально обосновано, и можно было думать, что оно освобождено от всякой таинственности. Но так последовательно не думали ни в XVII, ни в XVIII столетиях. Само значение слова «сила» не было вполне установлено, и нагромождались заблуждение за заблуждением. Поскольку каждому сознательному применению человеком силы предшествует волевой акт, то позади физического понятия силы искали нечто более глубокое, метафизическое, какое-то присущее телам стремление; в случае, например, силы тяжести - стремление соединиться с себе подобным. Нам теперь трудно понять эту точку зрения. Насколько она была тогда распространена даже среди выдающихся умов, показывает спор между картезианцами, с одной стороны, и Лейбницем с его последователями, с другой стороны, о «мере силы, соответствующей природе». Одни считали такой мерой количество движения, порожденное силой в определенный момент времени, другие - то, что теперь называют кинетической энергией, а раньше называлось «живой силой». Ньютон не смог в этом вопросе занять ясной позиции. Уже Даламбер (1717-1783) охарактеризовал бесконечную дискуссию, которая велась по этому поводу, как словесный спор. Но понятие силы для многих оставалось мистическим до тех пор, пока в 1874 г. Г. Р. Кирхгоф (1824-1887) не сказал решающего слова в первом предложении своих «Лекций по механике»: «Механика есть наука о движении; мы считаем ее задачей: описать наиболее полно и просто происходящие в природе движения». Согласно этому вектор, изображающий силу, считают функцией положения материальной точки или времени или обоих вместе. Скорость может быть также включена в определение силы, как это имеет место, например, для сил трения. Поэтому интегрирование ньютоновского уравнения движения является чисто математической задачей, разрешение которой дает ответ на любой обоснованный вопрос о движении. Больше физика ничего не может сделать и ничего больше здесь нельзя от нее требовать. Если читатель поймет слово «описание» как причинное объяснение, то надо ему сказать: объяснение явления природы может состоять только в том, чтобы поставить его в связь с другими явлениями природы посредством известных законов, в результате чего комплекс связанных явлений описывается как целое. Этот взгляд не только проводится в механике, но является в наше время всеобщим.

4
{"b":"118618","o":1}