Литмир - Электронная Библиотека
Содержание  
A
A

Прошедшие годы показали, что Дитц был прав. Подвижное океаническое дно, перемещающееся по обе стороны от срединно-океанического хребта со скоростью 2-10 см/год, – лишь одна, хотя и важнейшая, компонента тектоники плит. К тому же данный процесс ученые могут контролировать инструментально, и потому для скепсиса просто не осталось места. Даже самые убежденные консерваторы вынуждены признать спрединг. Но старые позиции сдаются постепенно, с тяжелыми, кровопролитными боями…

Согласно новой теории, литосфера разбита на серию жестких плит, взаимное расположение которых меняется во времени. Восстановление положения этих плит в разные отрезки геологической истории (так называемые палинспастические реконструкции) осуществляется с помощью методов сферической геометрии. Особенно любознательный читатель может познакомиться с этими методами по классической монографии К. Ле Пишона, Ж. Франшто, Ж. Боннина «Тектоника плит» (1977).

Разные ученые выделяют неодинаковое число плит. Это естественно, поскольку меняется и изученность самой проблемы, а вместе с этим уточняется и число плит. Наиболее часто выделяют такие плиты: Тихоокеанскую, Северо-Американскую, Евроазиатскую, Африканскую, Южно-Американскую, Индийскую (или Индо-Австралийскую), Антарктическую, Наска и Кокос.

Это, однако, наиболее крупные плиты. Стандартная их ширина от 6 до 7 тыс. км. Тихоокеанская плита – рекордная по размерам. Она имеет протяженность 10-11 тыс. км. Многие специалисты выделяют плиты и существенно меньших размеров, вплоть до самых маленьких (десятки километров). Их называют «шолями».

Границами плит служат зоны повышенной сейсмичности, часто сопровождаемой и активным вулканизмом. Они тяготеют к гребням срединно-океанических хребтов, к системам «дуга – желоб», к трансформным разломам. Большинство очагов землетрясений располагается в литосфере на глубинах до 70 км и приурочено к приостровным (внутренним) склонам глубоководных желобов. Глубокофокусные землетрясения группируются в узких (шириной до 50 км) фокальных зонах с наклоном от 20-25 до 80°, они прослеживаются на глубинах от 200-250 до 600- 700 км.

Зона, в которой океаническая кора, согласно теории мантийной конвекции, вновь погружается в мантию, носит название субдукционной, а процесс поглощения океанической коры – субдукцией. Это наиболее сложная и дискуссионная компонента тектоники плит.

Подливать масла в огонь мы не будем. Но все же заметим, что геофизики установили: векторы скольжения в зонах субдукции указывают на движение коры в желобах, оно направлено в противоположную от океанических плит сторону. Это служит хотя и косвенным, но надежным свидетельством процесса поглощения океанической коры в зоне субдукции. Более того, профессор Уеда неоднократно подчеркивал, что сам факт возникновения глубокофокусных землетрясений свидетельствует в пользу субдукции холодных плит.

На границах плит, кстати, происходят принципиально разные геологические процессы. Различают поэтому три основных типа границ.

1. Наращивания коры (конструктивный тип). Такую границу еще называют границей раздвижения (дивергенции). Примером могут служить срединно-океанические хребты.

2. Поглощения коры (деструктивный тип). Эта граница называется еще границей схождения (конвергенции). Примеры – зоны субдукции в районе глубоководных океанических желобов.

3. Скольжения. На таких границах плиты сталкиваются под разными углами и как бы трутся друг о друга. Примеры – складчатые горные системы, в частности Альпийско-Гималайский пояс.

Геофизик Олег Георгиевич Сорохтин, один из активных разработчиков этой новой теории, указывает, что наибольшая скорость раздвижения океанического дна фиксируется в юго-восточной части Тихого океана (в районе о. Пасхи): здесь ежегодно наращивается около 18 см новой океанической коры. Австралия удаляется от Антарктиды со скоростью 7 см/год, Южная Америка от Африки – 4 см/год, Северная Америка от Европы – 2- 2,3 см/год. Индийская плита поддвигается под Азиатскую со скоростью 5 см/год. Около 6 млн лет назад полуостров Калифорния в результате активного рифтогенеза, т. е. образования трещины в земной коре с последующим интенсивным раздвигом, был почти отделен от материка. С тех пор Калифорнийский залив разрастается со скоростью 6 см/год, что существенно выше скоростей спрединга в районе Атлантического срединно-океанического хребта. Скорость раскрытия Красноморского рифта (Красного моря) значительно меньше – всего 1,5 см/год.

Вопросы есть?

Разумеется. И очень много. Иначе и быть не может. Новое, свершающееся на наших глазах открытие только начинает по-настоящему восприниматься геологами. Принципиально новые факты, составившие основу этого революционного переворота, имели для старых, давно, казалось бы, устоявшихся взглядов, последствия неоднозначные. Одни из застарелых догматов пришлось отбросить, другие переставить на новое, подобающее им место, на третьи взглянуть другими глазами.

Я постараюсь в этой связи остановиться прежде всего на той небольшой группе вопросов, которые имеют непосредственное отношение и к другим великим открытиям, о коих уже шла речь.

Итак, перед стратиграфией встал ряд проблем, на которые она, вообще говоря, уже получила ответы качественного характера, если вспомнить теорию слоеобразования Головкинского и вытекающее из нее следствие о возрастном скольжении границ подразделений местных стратиграфических схем. После того как были сформулированы в явном виде основные положения тектоники литосферных плит, прояснился главный факт: осадконакопление в океане протекает на горизонтально перемещающемся дне, а потому и тип осадков и их мощности зависят прежде всего от соотношения скоростей седиментологических и сопутствующих им тектонических процессов. Важно знать, в каких ситуациях скоростями движения плит можно пренебречь (как слишком малыми) и считать тектонический фактор своеобразным фоном, на котором протекают процессы осадконакопления, а в каких – скоростные характеристики движения плит оказывают решающее влияние на механизмы накопления осадков да и слоев осадочных пород также.

Основное теоретическое достижение тектоники, связанное со спредингом, касается предсказания глубин и возраста океанического дна в зависимости от расстояния до срединно-океанического хребта. Джон Склейтер и Жорж Франшто исходя из предположения, что океаническое дно изостатически скомпенсировано, а породы, образующиеся в месте раздвига плит, постепенно остывают и уплотняются, построили теоретическую кривую изменения глубин дна в зависимости от возраста коры. Эта кривая получила в дальнейшем блестящее подтверждение многочисленными натурными наблюдениями, как геофизическими, так и непосредственными – с помощью скважин глубоководного бурения. Результаты бурения позволили и несколько скорректировать саму кривую.

Ясно, что коль скоро возраст базальтового ложа океана «скользит» по мере удаления от срединно-океанического хребта, то обязан «скользить» и возраст покрывающих его осадков. Факт этот, ровно за сто лет до открытий тектоники плит гениально предсказанный Головкинским, побудил нас отнести принцип скольжения возраста границ местных стратиграфических подразделений к числу важнейших принципов стратиграфии. Не все, вероятно, с этим согласятся. Ну что ж, понимание значимости крупных научных открытий не ко всем приходит одновременно.

Наиболее сложной для восприятия оказалась идея деструкции земной коры в районе глубоководных желобов, т. е. процесс субдукции. Сложность же заключается в том, что при этом процессе океаническая кора погружается в мантию, а вместе с нею с лика Земли бесследно исчезают и следы тех геологических процессов, которые протекали на океаническом дне в течение 150 млн лет. В этом, согласитесь, есть что-то мистическое и примитивное одновременно.

Поэтому в задачу новой теории входила разработка прежде всего таких методов, которые бы давали в руки геологов вполне осязаемые следы этого процесса. Пусть косвенные, но непременно проверяемые. Такие методы были созданы. Они опираются на результаты количественных спектральных анализов, дающих возможность улавливать тонкие нюансы в вариации химизма магматических пород, резонно интерпретируемые как реакция состава этих пород на изменение напряжений в зоне поддвига и соответственно на изменение реологических свойств мантии. Есть целый спектр петролого-геофизических подходов к решению этой проблемы.

49
{"b":"118164","o":1}