Литмир - Электронная Библиотека

В принципе эту величину можно реализовать как за счет кратковременного действия большой тяги, так и при длительном действии малой тяги. При выборе конкретных параметров РДТТ необходимо учесть допустимые перегрузки на конструкцию всего КА и его отдельных элементов, а также баллистические характеристики применяемого твердого топлива, влияние давления в камере сгорания на массу конструкции, на габариты и удельный импульс и т. д. В конечном счете характерное время работы для бортового РДТТ получается равным порядка 40 с, что при указанном выше значении полного импульса соответствует усредненной (за время работы) тяге ~30 кН. Эти параметры того же порядка, что и для двигателей верхней ступени РН «Дельта», которые рассматривались нами в соответствующем разделе.

По устройству и внешнему виду РДТТ космических аппаратов также не отличаются от двигателей верхних ступеней РН. Так что те и другие РДТТ вполне можно отнести к одному классу двигателей, тем более что твердотопливные верхние ступени в большинстве своем включаются после сообщения им первой космической скорости, т. е. сами по себе могут считаться космическими аппаратами. Сюда же относятся РДТТ разгонных блоков — унифицированных ракетных ступеней, которые также включаются на околоземных орбитах и могут использоваться в составе различных РН как для запуска ИСЗ, так и для разгона автоматических межпланетных станций.

В частности, в разгонных блоках широко применялись уже известные нам двигатели типа «Стар-37», Именно они использовались при запусках межпланетных КА «Вояджер», о чем шла речь на стр. 38. Начальная масса разгонных блоков составляла 1,22 т с учетом 1060 кг твердого топлива, после израсходования которого скорость КА увеличивалась на 2 км/е. Указанные блоки стабилизировались при помощи микродвигателей, работавших на жидком монотопливе (гидразине),

РДТТ применяются также на борту космических кораблей и в автоматических межпланетных КА, где они выполняют роль тормозных двигателей, развивающих сравнительно небольшой импульс тяги. После окончания работы эти РДТТ отделяются от КА.

В 1961–1962 гг. тормозной РДТТ тягой около 23 кН и массой 95 кг (с пластиковым корпусом) устанавливался в КА «Рейнджер» с тем, чтобы погасить скорость падения приборного контейнера на поверхность Луны (рис. 12). Двигатель должен был включаться на высоте 16 км и работать в течение 10 с до высоты 330 м. Далее сферический контейнер «Рейнджера» должен был совершать свободное падение, ударяясь о лунный грунт со скоростью 33 м/с, обеспечивающей сохранность научных приборов. По различным техническим причинам запуски всех КА «Рейнджер» указанного типа завершились неудачей. Зато успешными были полеты в 1966–1968 гг. нескольких КА «Сервейер», при посадке которых на лунную поверхность использовался бортовой РДТТ, Он обеспечивал снижение скорости КА до 120 м/с (далее включались ЖРД мягкой посадки). По своим параметрам этот твердотопливный двигатель близок к его модификации, использованной впоследствии в составе РН «Дельта».

При посадке космических кораблей «Меркурий» (1962–1963 гг.) и «Джемини» (1965–1966 гг.) твердотопливные двигатели обеспечивали их сход с околоземной орбиты на траекторию спуска. Тормозная двигательная установка корабля «Меркурий» содержала три РДТТ (рис. 13) с диаметром корпуса 300 мм, тягой каждого 4,45 кН и временем работы 10 с. Включение этих двигателей (их расположение было показано на рис. 5) осуществлял сам космонавт при помощи ручной системы управления.

Космические твердотопливные двигатели - img_13.png

Рис. 12. РДТТ космического аппарата «Рейнджер-3»:

1 — сопло раскрутки; 2 — корпус РДТТ раскрутки; 3 — тормозной РДТТ

Космические твердотопливные двигатели - img_14.png

Рис. 13. Тормозной РДТТ космического корабля «Меркурий»

Тормозная установка «Джемини» состояла из четырех РДТТ со сферическими корпусами (из титанового сплава) диаметром ~320 мм, с начальной массой по 31 кг. РДТТ снаряжались смесевым топливом, содержащим перхлорат аммония, полисульфидное горючее-связку и алюминий. При сгорании этого топлива развивалась тяга около 11 кН. В отличие от «Меркурия» на «Джемини» тормозные РДТТ включались не одновременно, а последовательно — один за другим:

Твердотопливная тормозная установка предусматривалась и в космических кораблях «Восход» (1964–1965 гг.) в качестве резервной: она должна была включаться в случае отказа жидкостной установки (которая, однако, продемонстрировала надежную работу).

В 70-х годах тормозные РДТТ применялись в КА для исследования Марса и Венеры. На стр. 28 упоминался один из таких двигателей, который обеспечил перевод спускаемых аппаратов советских. КА «Марс-2» и «Марс-3» с пролетной траектории на траекторию встречи с планетой. Этот РДТТ с тягой 4 кН и временем работы 55 с был показан на рис. 7 в составе КА. Недавно, в декабре 1978 г., бортовой РДТТ тягой 18 кН обеспечил перевод американского КА «Пионер-Венера-1» (начальной массой 550 кг) с пролетной траектории на орбиту Венеры, изменив при этом скорость КА на 1060 м/с. В сферическом корпусе двигателя диаметром 622 мм содержалось около 200 кг твердого топлива, которое было израсходовано примерно за 30 с. Этот же РДТТ использовался ранее в качестве апогейного бортового двигателя геостационарных ИСЗ «Скайнет».

ПЕРСПЕКТИВЫ РАЗВИТИЯ КОСМИЧЕСКИХ РДТТ [6]

Направления исследований и достигнутые результаты. Прежде всего следует отметить работы, связанные с модификацией существующих или поиском новых твердых ракетных топлив. При этом особое значение придавалось способам повышения характеристик топлив. Разработка топливных составов является сложной задачей, поскольку весьма часто факторы, способствующие улучшению одного качества, вызывают нежелательное изменение другого.

В ближайшие годы возможности повышения удельного импульса РДТТ за счет применения более эффективных топлив представляются довольно ограниченными. Наибольшего прироста этого параметра — порядка 200 м/с (т. е. 7 %) можно ожидать от использования металлизированных топлив, содержащих бериллий вместо алюминия. Увеличение удельного импульса в этом случае объясняется снижением молекулярной массы топлива (так как у бериллия она в 3 раза меньше, чем у алюминия) в сочетании с повышением температуры его сгорания. К настоящему времени созданы и испытаны образцы РДТТ, работающие на бериллийсодержащем топливе, однако широкому внедрению его препятствует чрезвычайно высокая токсичность бериллия (и соответственно продуктов сгорания топлива); к тому же бериллий дорог. Так что, по-видимому, указанное топливо найдет применение лишь в сравнительно небольших РДТТ, включение которых предусматривается уже в космосе.

Дальнейший прирост удельного импульса примерно еще на 200 м/с можно было бы получить, используя вместо бериллия его гидрид (BeH2). Однако этому препятствуют (помимо токсичности) химическая нестабильность соединения («утечка» водорода при хранении) и трудность приготовления достаточно плотных его составов. Следует заметить, что рассмотренные нами новые металлсодержащие топлива характеризуются при большем удельном импульсе меньшей плотностью (что является недостатком), поскольку по этому параметру бериллий уступает алюминию почти в 1,5 раза, а гидрид бериллия — более чем в 4 раза.

Энергетические характеристики твердых топлив могут быть повышены за счет применения в них более активных окислителей и горючих-связующих. Согласно расчету использование в смесевом топливе перхлората нитрония NO2ClO4 (вместо перхлората аммония, который содержит почти вдвое меньше кислорода) обеспечивает прирост удельного импульса до 300 м/с. Применению этого нового окислителя препятствуют, однако, его гигроскопичность, плохая совместимость с освоенными связующими и взрывоопасность. С целью снижения чувствительности перхлората нитрония к внешним воздействиям предложено, в частности, обрабатывать его газообразным аммиаком, в результате чего образуется «пассивный» поверхностный слой перхлората аммония. Высокая чувствительность препятствует применению в смесевых топливах и фтораминовых связующих, содержащих атомы F, N, Н; по удельному импульсу такие топлива были бы равноценны модифицированным двухосновным, содержащим октоген.

вернуться

6

По материалам зарубежной печати.

12
{"b":"115979","o":1}