Литмир - Электронная Библиотека
Содержание  
A
A

Необходимо также заметить следующее. Метод построения различных теоретических моделей является одним из весьма эффективных способов изучения Вселенной. Такими моделями являются, например, "Вселенная Фридмана" — теоретическая модель однородной изотропной расширяющейся Вселенной или "Вселенная Зельманова" — модель неоднородной анизотропной Вселенной. В основе втих и других моделей лежат современные фундаментальные физические теории, прежде всего общая — теория относительности.

Однако всегда следует помнить, что модель — это еще не сама Вселенная, а только попытка отразить некоторые ее аспекты. Поэтому автоматически отождествлять выводы той или иной модели с реальностью было бы ошибочным.

Подтвердить справедливость той или иной модели могут только наблюдения. С другой стороны, даже самые экстравагантные теоретические построения заслуживают известного внимания, поскольку они могут вскрыть некоторые определенные свойства реального мира.

От элементарных частиц до Млечных путей

Взаимосвязь микро- и макропроцессов — одно из конкретных выражений диалектики природы, всеобщей взаимосвязи ее явлений.

Уже сейчас в ряде случаев трудно разделить, где космология и где теория элементарных частиц. В центре внимания современной астрофизики находятся космические объекты, отличающиеся чрезвычайно высокой плотностью, а иногда и очень малыми размерами.

Так, среди различных решений уравнений общей теории относительности, описывающих свойства и эволюцию Вселенной, как мы уже знаем, есть решение типа сингулярности (когда. в некоторой точке плотность достигает бесконечной величины). По существу, сингулярностьэто некий аналог элементарной частицы. Вселенная в начальном сингулярном состоянии фактически превращается в элементарную частицу.

Возникает вопрос: нельзя ли с помощью уравнений общей теории относительности объяснить и некоторые свойства элементарных частиц, а наши знания о свойствах элементарных частиц использовать для выяснения физической сущности тех или иных явлений космического порядка, в частности закономерностей эволюции Вселенной?

Одной из самых жгучих проблем современной астрофизики и естествознания вообще является проблема происхождения звезд и звездных островов-галактик.

На этот счет в современной астрофизике существуют две противоположные концепции. Согласно одной из них, наиболее распространенной (ее обычно называют классической), космические объекты, в том числе звезды и галактики, формируются путем сгущения, конденсации диффузной материи газа и пыли.

Другая концепция, развиваемая академиком В. А. Амбарпумяном и его школой и получившая название Бюраканской (по названию обсерватории), наоборот, исходит из того, что эволюция космических объектов идет от более плотных состояний к менее плотным и что, в частности, «зародышами» звезд и галактик являются гипотетические сверхплотные объекты весьма малых размеров, взрывной распад которых и ведет к образованию различных небесных тел.

В настоящее время между сторонниками обоих направлений ведется острая дискуссия, и отдать кому-либо из них окончательное предпочтение пока не представляется возможным. Это объясняется, с одной стороны, недостатком наблюдательных данных, с другой — возможностью различного, иногда прямо противоположного истолкования одних и тех же фактов. В частности, никто никогда еще не наблюдал ни процесса сгущения диффузной материи в звезды, ни гипотетических сверхплотных тел.

В связи с этим известный советский астрофизик Б. А. Воронцов-Вельяминов не так давно высказал интересное предположение о том, что, быть может, в какой-то степени правы сторонники обеих точек зрения: не исключено, что в бесконечно разнообразной Вселенной совершаются как процессы концентрации материи, так и ее распада.

Интересная попытка построить космогоническую модель, которая в известной мере объединяла бы обе существующие концепции образования звезд и галактик, была предпринята советским физиком-теоретиком Р.Мурадяном.

Основная идея Мурадяна состоит в том, чтобы для выяснения физ. ической сущности явлений космического порядка, в частности закономерностей эволюции Вселенной, использовать некоторые свойства элементарных частиц.

В физике микромира на основе весьма общих теоретических соображений все элементарные частицы делятся на три класса: первый класс включает в себя фотон — порцию электромагнитного излучения, второй — электрон и нейтрино, третий класс — адроны — самый многочисленный (их известно сейчас несколько сотен). К этому классу относятся, в частности, протон, нейтрон и мезоны-частицы с массами промежуточными между массой электрона и массой протона. Значительная часть адронов — нестабильные частицы с очень коротким временем жизни. Особо коротко живущие частицы получили название резонансов.

Среди них имеются частицы, массы которых в несколько раз превосходят массу протона. И есть предположение, согласно которому "спектр масс" элементарных частиц вообще простирается до бесконечности. Если подобное предположение справедливо, то это значит, что при определенных условиях в ультрамалых пространственно-временных областях могут рождаться макроскопические и даже космические объекты. Во всяком случае, современная теория элементарных частиц такую возможность допускает.

Не являются ли в таком случае сверхплотные тела академика Амбарцумяна адронной формой существования материи? Подобная, на первый взгляд, весьма неожиданная идея, выдвинутая Р. Мурадяном, открывает интересные перспективы к построению единой теории образования космических объектов. Согласно новой гипотезе Метагалактика образовалась в результате распада сверхтяжелого суперадрона с массой Ю56 г. Это и был тот «первоатом», тот сверхплотный сгусток материи, который дал начало наблюдаемой Вселенной. Его распад на более мелкие адроны привел к образованию протоскоплений галактик, а последующие распады на адроны с еще меньшими массами — к образованию галактик.

Следующим этапом был распад на адроны с массами меньпгими Ю34 г. Это был своеобразный "фазовый переход" от адронной формы к ядерной. При этом возникли объекты типа нейтронных звезд. Дальнейшие распады, по мысли Мурадяна, должны были привести к образованию диффузного облака, внутри которого в результате конденсации вещества сначала возникли сгущения «протозвезды», а затем процесс образования звезд протекал в соответствии с обычной классической схемой.

Однако если в обычной классической картине образования космических объектов диффузная среда состоит из водорода и гелия, то в модели Мурадяна она может иметь различный химический состав в зависимости от особенностей распада предшествующих ей объектов. А это значит, что тяжелые химические элементы могут возникать не только за счет взрывов сверхновых звезд, как сейчас принято считать, но и в результате деления еще более тяжелых частиц. Это весьма важно, так как классическая теория происхождения тяжелых элементов встречается с рядом серьезных трудностей.

Таким образом, если в обычной классической астрофизике эволюционный процесс идет от объектов более разреженных к менее разреженным и от «беспорядка» к «порядку», то в модели Мурадяна на весьма значительном интервале существования Метагалактики эволюция, наоборот, идет от объектов более плотных к менее плотным и от более упорядоченных к менее упорядоченным.

Нетрудно заметить, что в этой части эволюционная схема Мурадяна хорошо согласуется с идеями Амбарцумяна. Однако с момента фазового перехода от адронной материи к ядерной она ближе к классической космогонии.

Разумеется, пока еще трудно говорить о том, в какой мере оригинальная модель Мурадяна соответствует реальной действительности, — разработка этой модели только начинается. Но новый подход к решению проблемы весьма интересен, поскольку сделана попытка объединить микроявления и космические процессы.

Как известно, одним из важных критериев справедливости той или иной теоретической модели служит ее способность предсказания определенных явлений. Если гипотеза Мурадяна верна и Метагалактика действительно возникла в результате распада суперадрона, то она должна обладать собственным вращением, поскольку собственным вращением обладал исходный суперадрон. Так что открытие вращения Метагалактики явилось бы если и не подтверждением модели Мурадяна, то, во всяком случае, важным свидетельством в ее пользу.

39
{"b":"115950","o":1}