Р(А ν В ν С)=Р(А) + Р(В) + Р(С) – Р(АиВиС).
Р (АиВиС)= Р (А) × Р(В) × Р (С)
С учетом этого получим
Р (А ν В ν С)=Р (А) + Р (В) + Р (С) – Р (А) × Р (В) × Р (С).
Теперь, после некоторого ознакомления с арифметическими операциями над вероятностями, можно привести формулу полной вероятности
В формуле предполагается, что событие А может произойти только с одним из n несовместимых событий B1….,Bn, то есть группа событий А и B1, или А и B2 и т. д. Любая группа из этого ряда равносильна появлению события А.
Пример 2. Пусть события D, Е, F независимые. Какова будет вероятность событий трех извлечений подряд небракованных деталей при условии, что выборка повторная.
Решение. При данном условии после извлечения каждый раз бракованной детали, а больше одной детали нельзя извлечь, количество бракованных деталей с каждым разом уменьшается на единицу. В третий раз будет извлечена последняя бракованная деталь.
5. Распределение случайных величин
Затрагивая вопрос о вероятности некоторого события, нельзя не говорить о закономерностях появления случайных величин.
Чтобы упростить ситуацию, эти величины делят на:
1) прерывные (дискретные) – например, количество некоторой продукции, не отвечающее установленным стандартам;
2) непрерывные – например, единицы той же продукции, которые имеют неодинаковые параметры, но эти параметры находятся в пределах границ предельно допустимого.
Зависимость между возможными значениями случайных величин и их вероятностями, выраженными конкретным способом, называется законом распределения случайных величин.
Для того, чтобы установить математическую форму этого закона, предположим, что дискретная случайная величина х может принимать значения х1, x2, x3…, хi…., xk, и пусть каждому из этих значений соответствует вероятность Px. Тогда ряд вероятностей, соответствующих значениям случайной величины х, будет иметь следующий вид Px,Px1,Px2,…,Pxi,…,Pxk.
Очевидно, что вероятность Px является некоторой функцией от переменной х и имеет вид: Px = f(х), где x = xi, i = 1, 2…, k.
Рассмотрим поведение этой функции для вышеприведенных двух видов случайных величин.
1. Случайная величина – дискретная (прерывная).
Случайная величина х < х', где х < х' задано, может выражаться следующим образом:
Функция F(х)=F(х') называется функцией распределения случайной прерывной величины ч. 2. Случайная величина – непрерывна. Плотностью вероятности Px в точке X = х называется предел вида
Следовательно, функцию F(х') можно дифференцировать, тогда
F (х)=f (х)
Основные свойства функции распределения следующие:
1) х = ∞;F(∞)= 1;
2) х = —∞;F(∞) = 0;
3) если аргумент x возрастает, т. е. если рассмотреть случай х2 > х1, то F(x2) > F(x1).
Если рассмотреть ΔF(х)=F(х2)-F (х1) то
6. Статистика распределения случайных величин
Основные характеристики случайных величин.
1. Меры положения.
Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин.
Сумма произведений эмпирических значений случайной величены xi на соответствующие частности называется выборочным средним
– это статистическая характеристика, соответствующая параметрам, т. е. теоретическому анализу, называемая средним значением случайной величины или математическим ожиданием случайной величины.
Математическое ожидание обозначается как
или м.о.(х), и определяется по уже известному теоретическому распределению.
При прерывности случайной величины
где p(x) – функция, которая определяет вероятности p(x) для всех xi случайной величины. При непрерывности случайной величины
где f(x) – плотность вероятности,
F(x) – функция распределения случайной величины.
Кроме вышеприведенных оперируют следующими мерами положения:
1) среднее гармоническое;
2) среднее логарифмическое;
3) скользящее среднее;
4) накопленное среднее.
Но эти меры используются не очень часто.
2. Меры рассеяния.
Если меры положения характеризовали точки, вокруг которых происходило колебание значений случайных величин, то меры рассеяния характеризуют группировку самих значений колеблющейся величины x или xi
Подхарактеристика мер рассеяния:
1. Выборочное среднее абсолютное отклонение
– абсолютное отклонение наблюденного значения xi случайной величины от выборочного среднего.
2. Выборочная дисперсия S2; она характеризует рассеяние или однородность случайной величины xi
7. Выборочное среднеквадратичное отклонение
Эта характеристика пользуется наибольшей популярностью:
При n1 = n2 =… = nk = 1, т. е. в случае несведения в разряды наблюденных значений xi,
Дисперсией δ2
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.