Литмир - Электронная Библиотека
Содержание  
A
A

17. Ламинарное движение

Это движение, называют также потенциальным (безвихревым) движением.

При таком движении отсутствует вращение частиц вокруг мгновенных осей, которые проходят через полюсы жидких частиц. По этой причине:

υx = 0; υy = 0; υz = 0. (1)

ωx = ωy = ωz = 0.

Выше отмечалось, что при движении жидкости происходит не только изменение положения частиц в пространстве, но и их деформация по линейным параметрам. Если рассмотренное выше вихревое движение является следствием изменения пространственного положения жидкой частицы, то ламинарное (потенциальное, или безвихревое) движение является следствием деформационных явлений линейных параметров, например, формы и объема.

Вихревое движение определялось направлением вихревого вектора

Гидравлика - i_035.png

где υ – угловая скорость, которая является характеристикой угловых деформаций.

Деформацию этого движения характеризируют деформацией этих компонентов

Гидравлика - i_036.png

Но, поскольку при ламинарном движении υxy= υz= 0, то:

Гидравлика - i_037.png

Из этой формулы видно: поскольку существуют частные производные, связанные между собой в формуле (4), то эти частные производные принадлежат некоторой функции.

18. Потенциал скорости и ускорение при ламинарном движении

φ = φ(x, y, z) (1)

Функция φ называется потенциалом скорости.

С учетом этого, компоненты φ выглядят следующим образом:

Гидравлика - i_038.png

Формулой (1) описывается неустановившееся движение, поскольку она содержит параметр t.

Ускорение при ламинарном движении

Ускорение движения жидкой частицы имеет вид:

Гидравлика - i_039.png

где du/dt – полные производные по времени.

Ускорение можно представить в таком виде, исходя из

Гидравлика - i_040.png

Составляющие искомого ускорения

Гидравлика - i_041.png

Формула (4) содержит в себе информацию о полном ускорении.

Слагаемые υux/υt, υuy/υt, υuz/υt, называют местными ускорителями в рассматриваемой точке, которыми характеризуются законы изменения поля скоростей.

Если движение установившееся, то

Гидравлика - i_042.png

Само поле скоростей может быть названо конвекцией. Поэтому остальные части сумм, соответствующие каждой строке (4), называют конвективными ускорениями. Точнее, проекциями конвективного ускорения, которое характеризует неоднородность поля скоростей (или конвекций) в конкретный момент времени t.

Само полное ускорение можно назвать некоторой субстанцией, которая является суммой проекций

dux/dt, duy/dt, duz/dt,

19. Уравнение неразрывности жидкости

Довольно часто при решении задач приходится определять неизвестные функции типа:

1) р = р (х, у, z, t) – давление;

2) nx(х, у, z, t), ny(х, у, z, t), nz(х, у, z, t) – проекции скорости на оси координат х, у, z;

3) ρ (х, у, z, t) – плотность жидкости.

Эти неизвестные, всего их пять, определяют по системе уравнений Эйлера.

Количество уравнений Эйлера всего три, а неизвестных, как видим, пять. Не хватает еще двух уравнений для того, чтобы определить эти неизвестные. Уравнение неразрывности является одним из двух недостающих уравнений. В качестве пятого уравнения используют уравнение состояния сплошной среды.

Гидравлика - i_043.png

Формула (1) является уравнением неразрывности, то есть искомое уравнение для общего случая. В случае несжимаемости жидкости ∂ρ/dt = 0, поскольку ρ = const, поэтому из (1) следует:

Гидравлика - i_044.png

поскольку эти слагаемые, как известно из курса высшей математики, являются скоростью изменения длины единичного вектора по одному из направлений X, Y, Z.

Что касается всей суммы в (2), то она выражает скорость относительного изменения объема dV.

Это объемное изменение называют пооразному: объемным расширением, дивергенцией, расхождением вектора скоростей.

Для струйки уравнение будет иметь вид:

Гидравлика - i_045.png

где Q – количество жидкости (расход);

ω– угловая скорость струйки;

∂l – длина элементарного участка рассматриваемой струйки.

Если давление установившееся или площадь живого сечения ω = const, то ∂ω /∂t = 0, т. е. согласно (3),

ρ∂Q/∂l = 0, следовательно,

Гидравлика - i_046.png

20. Характеристики потока жидкости

В гидравлике потоком считают такое движение массы, когда эта масса ограничена:

1) твердыми поверхностями;

2) поверхностями, которые разделяют разные жидкости;

3) свободными поверхностями.

В зависимости от того, какого рода поверхностями или их сочетаниями ограничена движущаяся жидкость, различают следующие виды потоков:

1) безнапорные, когда поток ограничен сочетанием твердой и свободной поверхностей, например, река, канал, труба с неполным сечением;

2) напорные, например, труба с полным сечением;

3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой.

Живое сечение и гидравлический радиус потока. Уравнение неразрывности в гидравлической форме

Сечение потока, с которого все линии тока нормальны (т. е. перпендикулярны), называется живым сечением.

Чрезвычайно важное значение имеет в гидравлике понятие о гидравлическом радиусе

Гидравлика - i_047.png

Для напорного потока с круглым живым сечением, диаметром d и радиусом r, гидравлический радиус выражается

Гидравлика - i_048.png

При выводе (2) учли

Гидравлика - i_049.png

Расход потока – это такое количество жидкости, которое проходит через живое сечение за единицу времени.

Для потока, состоящего из элементарных струек, расход:

Гидравлика - i_050.png

где dQ = dω – расход элементарного потока;

U– скорость жидкости в данном сечении.

Q = uw.

6
{"b":"112202","o":1}