В ряде случаев Ш. используется как источник информации. Например, в военно-морской технике по Ш., создаваемому на ходу подводными лодками и надводными кораблями, их обнаруживают и пеленгуют; в радиоастрономии по Ш. в определённых диапазонах частот исследуется радиоизлучение звёзд и других космических образований. Шумоподобные сигналы применяются в технике радио- и акустических измерений, например в архитектурной акустике. Некоторые звуки, используемые в музыке, по физическому существу шумовые или обладают шумовыми признаками. Встречающиеся в речи шумные согласные по своим свойствам также являются шумами.
Качеств. особенности ощущения при восприятии акустического Ш. органами слуха и организма в целом зависят от его интенсивности (см. Громкость звука
) и спектрального состава. Вредное действие Ш. на организм человека проявляется в специфическом поражении органа слуха и неспецифическими изменениях других органов и систем. Имеют значение характер, уровень, частотный состав, продолжительность воздействия Ш. и индивидуальная чувствительность к нему. Продолжит. влияние интенсивного Ш. может вызвать значительные расстройства деятельности центр. нервной системы, сосудистого тонуса, функций органов желудочно-кишечного тракта, эндокринной системы, а также постепенно развивающуюся тугоухость
, обусловленную невритом преддверноулиткового нерва. Для профессиональной тугоухости характерно первоначальное нарушение восприятия высоких частот (4000— 8000 гц
).
Неспецифическое действие Ш. может проявиться раньше, чем изменения слуха, и выражается в форме невротических реакций, астении
, нарушения функций вегетативной нервной системы. Под влиянием Ш. нарушается точность координации движений, снижается производительность труда. В связи с единой этиологией клинических нарушений в медицинской литературе появился термин «шумовая болезнь». Для предотвращения вредного действия акустических Ш. на организм человека принимают ряд организационных, технических и медицинских мер. Устраняют или ослабляют причины, порождающие Ш., на месте его образования; предотвращают его распространение от источников Ш., используя местную звукоизоляцию шумящих узлов машин, амортизацию и звукопоглощение, ослабляющее Ш. за счёт снижения отражений от ограждающих конструкций, облицовываемых звукопоглощающими пористыми материалами; уменьшают аэродинамический Ш. (выхлоп, Ш. в воздуховодах и т.д.), устраняя причины вихреобразования, звукоизолируя воздуховоды и применяя глушители. Важно рационально чередовать труд и отдых работающих в условиях Ш., ограничивать длительность воздействия Ш. на них, систематически наблюдать за состоянием их здоровья. Борьба с уличным Ш. ведётся путём замены трамвайного транспорта троллейбусным и автобусным, ограничения пользования звуковыми сигналами и т.п. Зоны, где уровень Ш. достигает 85 дб
, обозначают предупредительными знаками, а работающих в этих зонах снабжают индивидуальными звукоизолирующими наушниками. Кроме вредного воздействия на человека, известно благотворное, успокаивающее влияние на него акустического Ш., например Ш. морского прибоя, Ш. леса.
Лит.:
Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Левин Б. Р., Теория случайных процессов и её применение в радиотехнике, 2 изд., М., 1960; Борьба с шумом, под ред. Е. Я. Юдина, М., 1964; Кириллов Н. Е., Помехоустойчивая передача сообщений по линейным каналам со случайно изменяющимися параметрами, М., 1971; Акустика океана, под ред. Л. М. Бреховских, М., 1974; Гершман С. Г., Тужилкин Ю. И., Об интерференции широкополосных шумовых сигналов, «Акустический журнал», 1965, т. 11, в. 1, с. 42; Бокс Дж., Дженкинс Г., Анализ временных рядов. Прогноз и управление, [в. 1—2], М., 1974; Рытов С. М., Введение в статистическую радиофизику, М., 1966: Белл А., Шум. Профессиональная вредность и общественное зло, пер. с англ., 1967; Шум и шумовая болезнь, Л., 1972; Суворов Г. А., Лихницкий А. М., Импульсный шум и его влияние на организм человека, Л., 1975.
С. Г. Гершман, Г. А. Суворов.
Шума коэффициент
Шу'ма коэффицие'нт,
шум-фактор, числовая характеристика радиоприёмника, показывающая, насколько ухудшается его чувствительность к входному сигналу под действием собственных шумов (см. Флуктуации электрические
).
Ш. к. F
равен отношению полной мощности шумов на выходе реального приёмника Р
реал
к выходной мощности шумов такого же идеального (не шумящего) приёмника Р
ид
при условии, что единственный источник входного шума в обоих случаях — тепловой шум согласованного сопротивления (эквивалент антенны), находящегося при температуре T
=
290 К (см. Найквиста формула
):
F =
Р
реал
/Р
ид
= Р
реал
/кТ
DfG
. (1)
Здесь k — Больцмана постоянная
,
Df —
полоса пропускания приёмника в гц
, a G —
его коэффициент усиления по мощности. Ш. к. выражают также в децибелах: F
(дб
) ==
10 lg F.
Для идеального приёмника F =
1 (или 0 дб
), для реального, шумящего F >
1. Часто вместо Ш. к. шумы характеризуются шумовой температурой
Т
ш
.
Ш. к. измеряют с помощью эталонных генераторов шума или генераторов стандартных синусоидальных сигналов, фиксируя, во сколько раз увеличивается полная мощность выходного сигнала приёмника при подаче на вход калибровочного сигнала Р
ген
по сравнению с выходной мощностью при отсутствии сигнала Р
ген
. Например, при измерении методом «удвоенного превышения» выбирают Р
ген
такой, чтобы мощность выходного сигнала удваивалась. Тогда Р
реал
= GP
ген
и Ш. к. подсчитывают по формуле (1).
Наименьший Ш. к. имеют квантовые усилители
и охлаждаемые параметрические усилители
на полупроводниковых диодах, у которых F
»1,1, Т
ш
» 30 К (для неохлаждаемых F
» l,3, Т
ш
» 100К). Для усилителей на лампах бегущей волны и туннельных диодах
F
»
3—
10, Т
ш
» 600—3000К. Радиовещательные приёмники и телевизоры имеют величину Ш. к. от нескольких единиц до нескольких десятков.
Лит.:
Кузьмин А. Д., Измерение коэффициента шума приемно-усилительных устройств, М.— Л., 1955; Суходоев И. В., Шумы электрических цепей. (Теория), М., 1975.
И. Т. Трофименко.