Литмир - Электронная Библиотека

  Перфторалкилакрилатные каучуки значительно уступают др. фторкаучукам по термической и химической устойчивости, но обладают высокой масло- и водостойкостью. Маслостойкие фторсилоксановые каучуки (СКТФТ) близки по остальным свойствам к каучукоподобным полиорганосилоксанам, не содержащим в макромолекуле атомов фтора (см. Кремнийорганические каучуки ).

  Основной метод синтеза Ф. — радикальная полимеризация мономеров в эмульсии. Применяют Ф. главным образом в производстве уплотнительных деталей, работающих в контакте с маслами, окислителями и другими агрессивными средами при 200°С и выше. Перфторалкилакрилатным латексом пропитывают ткани для спецодежды. Ф. дороги; используются главным образом в химической промышленности, в авиации и космической технике.

  Лит.: Соколов С. В., Каган Е Г., Иванова Т. Л., Термостойкие эластомеры, «Журнал Всес. химического общества», 1974, т. 19, № 6; Amold R. G., Barney A. L., Thompson D. C., Fluoroelastomers, «Rubber Chemistry and Technology», 1973, v. 46, № 3. См. также лит. при ст. Каучуки синтетические .

  С. В. Соколов.

Большая Советская Энциклопедия (ФТ) - i010-001-262284707.jpg

К ст. Фторкаучуки.

Фторопласты

Фторопла'сты, принятое в СССР техническое название фторсодержащих пластических масс , представляющих собой гомополимеры фторпроизводных этилена и сополимеры их, например с др. фторпроизводными олефинами, олефинами, перфторалкилвиниловыми эфирами. Наибольшее значение имеют политетрафторэтилен (85% мирового производства всех Ф.) и политрифторхлорэтилен — кристаллические полимеры белого цвета, отличающиеся высокой химической стойкостью, термо-, морозо- и атмосферостойкостью, ценным комплексом физических свойств, негорючестью.

  Политетрафторэтилен, [—CF2 —CF2 —]n , молекулярная масса 5·105 —2·106 , плотность около 2,2 г/см3 (20°С). Превосходит по химической стойкости платину, кварц, графит и все синтетические материалы; устойчив к действию сильных окислителей, восстановителей, кислот, щелочей, органических растворителей, разрушается лишь расплавленными или растворёнными в жидком аммиаке щелочными металлами, а также газообразным фтором и трёхфтористым хлором (при температурах около 150°С). В полифторированных углеводородах начинает набухать при температуре выше 327°С. Политетрафторэтилен характеризуется прочностью при растяжении 14—35 Мн/м2 , или 140—350 кгс/см2 , относительным удлинением 250—500%, исключительно высокими диэлектрическими свойствами (тангенс угла диэлектрических потерь при 60 гц — 1 Мгц 0,0002—0,00025), почти не зависящими от частоты и температуры, высокой дугостойкостью (250 сек ). Он не изменяется в воде, жидких топливах и маслах, устойчив в тропическом климате, к действию грибков; физиологически инертен. Сохраняет определённую эластичность при температурах до — 269°С; обладает хладотекучестью под нагрузкой и низкой адгезией, нестоек к радиации. При плавлении (327°С) полимер становится прозрачным и, не переходя в вязкотекучее состояние, разлагается при 415°С.

  Политрифторхлорэтилен, [—CF2—CFCI—] n , молекулярная масса 56000—360000, плотность при 25°С 2,09—2,16 г/см3 (закристаллизованных образцов). Химически стоек к действию окислителей, щелочей, сильных кислот, набухает в ряде эфиров и галогенопроизводных углеводородов, растворяется в ароматических углеводородах при температурах выше их температур кипения. Политрифторхлорэтилен характеризуется прочностью при сжатии до 500 Мн/м2 , или 5000 кгс/см2 (для обожжённых образцов), хорошими диэлектрическими свойствами при низких частотах (тангенс угла диэлектрических потерь при 1 кгц 0,024), высокой дугостойкостью (>360 сек ), низкими хладотекучестью, влаго- и газопроницаемостью. Плавится при 210°С, причём при 240—270°С переходит в вязкотекучее состояние. Разлагается при 270°С, но уже при 170—200°С механические свойства полимера резко ухудшаются.

  Интервал температур эксплуатации от — 196 до 130—190°С.

  Сополимеры тетрафторэтилена с гексафторпропиленом, а также с перфторпропилвиниловым эфиром сочетают высокую химическую и термическую стойкость с хорошей перерабатываемостью; благодаря высокой текучести расплава второй сополимер пригоден в качестве высокотемпературного клея для фторопластов. Сополимеры тетрафторэтилена с перфторолефинами, содержащими сульфогруппу, — термически и химически устойчивые катионообменные смолы, превосходящие по кислотности все др. твёрдые ионообменные смолы ; успешно используются в качестве мембраны для топливных элементов. Сополимеры тетрафторэтилена с этиленом, винилиденфторидом (а также поливинилфторид и поливинилиденфторид) уступают рассмотренным выше гомополимерам по химической стойкости, но обладают рядом др. ценных качеств, в том числе высокой прочностью и хорошими технологическими свойствами.

  Получают Ф. радикальной полимеризацией или сополимеризацией соответствующих мономеров. Перерабатывают методами, принятыми для термопластов, например литьём под давлением , экструзией , за исключением политетрафторэтилена, который перерабатывают холодным таблетированием порошка под давлением 25—35 Мн/м2 , или 250—350 кгс/см2 , с последующим спеканием при 360—380°С. Из Ф. получают плёнки, транспортёрные ленты, антифрикционные материалы для подшипников и сальников, работающих без смазки, волокна и ткани, лабораторную посуду, химически стойкие покрытия, металлопласты. Низкомолекулярный политрифторхлорэтилен используют как химически стойкую смазку. Изделия из Ф. применяют в электро- и радиотехнике, авиации и ракетной технике, машиностроении, химической и атомной промышленности, в криогенной технике, пищевой промышленности и медицине.

  В СССР Ф. выпускают под название фторлон: политетрафторэтилен — фторлон-4, политрифторхлорэтилен — фторлон-3, в США — под название тефлон и кель-F соответственно.

  Лит.: Фторполимеры, пер, с англ., М., 1975; Энциклопедия полимеров, т. 3, М., 1977.

  С. В. Соколов.

Фторорганические соединения

Фтороргани'ческие соедине'ния, органическое соединения, содержащие в молекулах одну или несколько связей F—C. Химия Ф. с. начала интенсивно развиваться лишь со 2-й половины 20 в., но уже выросла в большую специализированную область органической химии . Её развитие было обусловлено потребностями молодой атомной промышленности в материалах, стойких к фторирующему действию UF6 , который применяется для изотопов разделения урана. Известны фторпроизводные всех типов органических соединений.

  Номенклатура. Положение атома фтора в Ф. с. обозначают согласно правилам номенклатуры органических соединений (см. Номенклатура химическая ). Для построения название полифторзамещённых соединений удобнее пользоваться приставкой «пер». Так, полностью фторировнные углеводороды называются перфторуглеводородами (или фторуглеродами), например CF3 (CF2 )5 CF3 называется перфторгептаном. Частично фторированные соединения можно рассматривать как производные перфторуглеводородов, например CF3 CFH (CF2 ) CF2 H называется 1,6-дигидроперфторгептаном. Очень часто в название Ф. с. сочетание «перфтор» заменяют греческой буквой j; в этом случае, например, перфторэтан называется j-этаном. Для обозначения полностью фторированных углеводородов используют также частицу «фор» (фтор), которую включают в наименование соответствующего углеводорода, например название CF4 — метфоран, C2 F6 — этфоран.

  Методы синтеза. Прямое фторирование, а также присоединение F2 по двойной связи — радикальные чрезвычайно экзотермические реакции:

6
{"b":"106338","o":1}