Литмир - Электронная Библиотека
Содержание  
A
A

  У. на в. п. имеют важнейшее значение для изучения упругих и неупругих процессов взаимодействия стабильных частиц – протонов и электронов (и их античастиц); в области сверхвысоких энергий с ними не могут конкурировать обычные ускорители с неподвижной мишенью.

  Недостаток У. на в. п. – малая плотность пучков частиц по сравнению с плотностью неподвижной мишени. Для увеличения плотности частиц до процесса соударения производится накапливание заряженных частиц в специальных накопительных кольцах (см. Накопители заряженных частиц ), так чтобы токи циркулирующих частиц составляли не менее десятков а. Однако и при таких токах интенсивность пучков вторичных частиц высоких энергий (p- и К-мезонов, нейтрино и др.), образующихся при соударениях, на несколько порядков меньше, чем интенсивность пучков тех же частиц, получаемых на обычных ускорителях. Кроме того (т.к. энергия вторичной частицы не может превышать энергию сталкивающихся в У. на в. п. первичных частиц), получается проигрыш в энергии вторичных частиц по сравнению с традиционными ускорителями. Поэтому У. на в. п. не могут заменить, а лишь дополняют традиционные ускорители, и развитие тех и других должно идти параллельно.

  В накопительные кольца, представляющие собой кольцевые вакуумные камеры, помещенные в магнитное поле, ускоренные заряженные частицы поступают из обычного ускорителя. Магнитное поле создаётся, как правило, секторными магнитами, разделёнными прямолинейными промежутками (без магнитного поля) для областей пересечения пучков (и для размещения ускорительного устройства). Установка со встречными пучками содержит один или два накопительных кольца в зависимости от того, различны (как у е- е + , р

Большая Советская Энциклопедия (УС) - i-images-190982578.png
, где
Большая Советская Энциклопедия (УС) - i-images-149452707.png
 – антипротон) или соответственно одинаковы (как у е- е- , рр) знаки электрических зарядов сталкивающихся частиц. Предварительное ускорение пучков (до инжекции в накопительные кольца) производится в синхрофазотронах или синхротронах (с сильной или слабой фокусировкой), а также в линейных ускорителях. Возможно и дополнительное ускорение частиц в накопительных кольцах после инжекции. Однако независимо от того, производится ли дополнительное ускорение, каждый накопительный комплекс на встречных пучках обязательно включает ускоряющую систему для компенсации потерь энергии заряженных частиц на синхротронное излучение (для электрон-позитронных пучков) и ионизацию остаточного газа в камере. Второе назначение системы ускорения – фиксация азимутальных размеров пучка (число сгустков частиц равно кратности частоты ускоряющей системы по отношению к частоте обращения частиц). Типичные схемы электрон-позитронного и протон-протонного накопительного комплекса приведены на рис. 1 и 2 .

  Основная характеристика системы со встречными пучками – величина, которая определяет число (N ) событий исследуемого типа в единицу времени и называется светимостью (1.) установки. Если изучается взаимодействие с сечением d, то N = L (. В наиболее простом случае, когда угол встречи пучков равен нулю, L = R (N1N2 /S )w/2p, где N1 , N2 – полные числа частиц в каждом пучке, заполняющем кольца, S – площадь поперечного сечения, общая для обоих пучков, w – круговая частота обращения частиц по замкнутой орбите, R – коэффициент использования установки, равный отношению длины промежутков встречи пучков к периметру орбиты. В более общем случае R зависит от области перекрытия пучков, т. е. от углов пересечения и относительных размеров пучков. Для эффективного изучения процессов взаимодействия с сечением d = 10-26 –10-32см2 , величина светимости должна составлять 1028 –1032см-2сек-1. Это достигается накоплением циркулирующего тока пучков заряженных частиц и уменьшением поперечного сечения пучков при помощи специальной магнитной фокусировки в прямолинейных промежутках, а также использованием методов электронного или стохастического охлаждения с целью уменьшения поперечной компоненты импульса сталкивающихся пучков. Метод электронного охлаждения был предложен в 1966 сов. физиком Г. И. Будкером для тяжёлых частиц (протонов и антипротонов), у которых из-за практического отсутствия синхротронного излучения не происходит автоматического затухания поперечных колебаний частиц в пучке. Метод основан на эффекте передачи тепловой энергии пучка тяжёлых частиц сопутствующему (пущенному параллельно) электронному пучку с более низкой температурой. Экспериментальное подтверждение этого эффекта было впервые получено в институте ядерной физики Сибирского отделения АН СССР (1974).

  Для того чтобы обеспечить непрерывный физический эксперимент с мало меняющейся светимостью установки, необходимо большое время жизни накопленных пучков частиц. Время жизни пучка (время, в течение которого интенсивность пучка уменьшается в е (2,7 раз) зависит от ряда эффектов. Главные из них – однократное и многократное рассеяние ускоренных частиц на атомах остаточного газа в камере накопителя, а для электронов и позитронов – синхротронное излучение и квантовые флуктуации; существенную роль может также играть эффект взаимного рассеяния электронов (позитронов) пучка. Экспериментальный критерий времени жизни пучка – относительная величина потери интенсивности пучков в % за 1 ч; для лучших действующих установок она составляет десятые доли % в час [для протонной установки в Европейском центре ядерных исследований (ЦЕРНе) – 0,1%/ч при токе 22 а ]. Такая большая величина времени жизни пучков достигается при помощи высокого вакуума в камерах накопителей пучков: 10-11 мм рт. ст. в объёме камеры и 10-12мм рт. ст. в зонах встречи пучков.

  Необходимым элементом ускорителя со встречными е- е + пучками является электрон-позитронный конвертер – металлическая мишень (с толщиной около 1 радиационной длины; на рис. 1 на прямом пучке), в которой электроны рождают тормозные гамма-кванты, а те, в свою очередь, – пары электрон-позитрон. Коэффициент конверсии – отношение числа позитронов, захваченных в накопитель, к числу электронов, выведенных из синхротрона – при энергии электронного пучка в сотни Мэв может достигать величины 10-4 для позитронного пучка с энергией, примерно вдвое меньшей энергии электронов.

  Для схемы протон-протонных столкновений (рис. 2 ), реализуемой на базе двух магнитных структур с сильной фокусировкой, характерно наличие многих точек встречи пучков, что позволяет одновременно проводить несколько физических экспериментов.

  Типичные параметры наиболее крупных У. на в. п. приведены в таблице.

Крупнейшие ускорители на встречных пучках и их параметры

Установка Тип встречных пучков Энергия, Мэв Средний радиус орбиты, м Светимость, см-2 ×сек-1 Год запуска
ВЭПП-2 (СССР, Новосибирск) е+ е- 2 ´700 1,9 ~ 1029 1966
ВЭПП-4 (СССР, Новосибирск) е+ е- 2 ´3500 12,0 ~ 1030 заканчивается сооружение
SPEAR (США, Станфорд) е+ е- 2 ´4500 37,2 6×1030 1972
АСО (Франция, Орсе) е+ е- 2 ´540 3,5 1029 1966
ADONE (Италия, Фраскати) е+ е- 2 ´1500 16,4 6 ×1029 1969
ISR (ЦЕРН, Швейцария, Женева) рр 2 ´31400 150 6,7 ×1030 1971
ISABELLE (США, Брук-хейвен)
Большая Советская Энциклопедия (УС) - i-images-101828467.png
2 ´200 ×103 428
Большая Советская Энциклопедия (УС) - i-images-168684360.png
проектируется
РЕР (США, Станфорд) е+ е- 2 ´15 ×103 350 1032 проектируется
SUPER ADONE (Италия, Фраскати) е+ е- 2 ´12 ×103 136  1032 проектируется
18
{"b":"106326","o":1}