Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли — Николаем и Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Леонарда.
В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук. Они способствовали тому, что и Эйлер переехал в Россию.
Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д Бернулли, возвратившийся в этом году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».
В 1736 году появились два тома его аналитической механики. Потребность в этой книге была большая. Немало было написано статей по разным вопросам механики, но хорошего трактата по механике еще не имелось.
В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки.
В конце 1740 года власть в России перешла в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.
В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной королевской Академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.
Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере остается и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж, и сложилась новая наука.
Доказательство Эйлера основной теоремы алгебры опубликовано в 1751 году в работе «Исследования о воображаемых корнях уравнений».
Эйлер выполнил наиболее алгебраическое доказательство теоремы. Позднее его основные идеи повторялись и углублялись другими математиками. Так, методы исследования уравнений получили развитие сначала у Лагранжа, а затем вошли составной частью в теорию Галуа.
Основная теорема состояла в том, что все корни уравнения принадлежат полю комплексных чисел. Для доказательства подобного положения Эйлер установил, что всякий многочлен с действительными коэффициентами можно разложить в произведение действительных линейных или квадратичных множителей.
Значения чисел, не являющиеся действительными, «Эйлер называл воображаемыми, — пишет Никифоровский, — и указывал, что обычно считают их такими, которые попарно в сумме и произведении дают действительные числа Следовательно, если воображаемых корней будет 2 т, то это даст т действительных квадратичных множителей в представлении многочлена. Эйлер пишет. „Поэтому говорят, что каждое уравнение, которое нельзя разложить на действительные простые множители, имеет всегда действительные множители второй степени. Однако никто, насколько я знаю, еще не доказал достаточно строго истинность этого мнения; я постараюсь поэтому дать ему доказательство, которое охватывает все без исключения случаи“.
Такой же концепции придерживались Лагранж, Лаплас и некоторые другие последователи Эйлера. Не согласен с ней был Гаусс.
Эйлер сформулировал три теоремы, вытекающие из свойств непрерывных функций.
1. Уравнение нечетной степени имеет по меньшей мере один действительный корень. Если таких корней больше одного, то число их нечетно.
2. Уравнение четной степени либо имеет четное число действительных корней, либо не имеет их совсем.
3. Уравнение четной степени, у которого свободный член отрицательный, имеет по меньшей мере два действительных корня разных знаков.
Вслед за этим Эйлер доказал теоремы о разложимости на линейные и квадратичные действительные множители многочленов с действительными коэффициентами…
При доказательстве основной теоремы Эйлер установил два свойства алгебраических уравнений: 1) рациональная функция корней уравнения, принимающая при всех возможных перестановках корней А различных значений, удовлетворяет уравнению степени А, коэффициенты которого выражаются рационально через коэффициенты данного уравнения; 2) если рациональная функция корней уравнения инвариантна (не меняется) относительно перестановок корней, то она рационально выражается через коэффициенты исходного уравнения».
П.С. Лаплас в лекциях по математике 1795 года, вслед за Эйлером и Лагранжем, допускает разложение многочлена на множители. При этом Лаплас доказывает, что они будут действительными.
Таким образом, и Эйлер, и Лагранж, и Лаплас строили доказательство основной теоремы алгебры на предположении существования поля разложения многочлена на множители.
Особая роль в доказательствах основной теоремы принадлежит «королю математиков» Гауссу.
Карл Фридрих Гаусс родился (1777–1855) в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери яркий интеллект. В семь лет Карл Фридрих поступил в Екатерининскую народную школу. В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать — математиком или филологом.
О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду — герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счета. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Геттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.
В 1795 году Гаусса охватывает страстный интерес к целым числам. Осенью того же года Гаусс переезжает в Геттинген и прямо-таки проглатывает впервые попавшуюся в его руки литературу: работы Эйлера и Лагранжа.
«30 марта 1796 года наступает для него день творческого крещения. — пишет Ф. Клейн, — Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника… Это событие явилось поворотным пунктом жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».
Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времен». Только трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошел, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.