Ну сами посудите, что общего у тяжелой, металлической и очень легкоплавкой ртути с углеродом – неметаллическим, легким и тугоплавким? Это ж просто химические антагонисты какие-то!.. Ан нет! Есть у них одно общее! И это общее – потенциал ионизации первого электрона. Именно поэтому такие непохожие друг на друга ртуть и углерод оказались вместе, рядышком – между Марсом и Юпитером. Аналогичная ситуация с серой, осмием, бериллием, иридием. Их в метеоритах полно.
А чего в метеоритах мало? В метеоритах мало цезия, урана, рубидия, калия. Они легко ионизируются, легко тормозятся магнитным полем. Поэтому на Земле их больше, чем на Марсе. А на Меркурии их должно быть вообще немерено!
Все, вроде, складывается… И, значит, теперь мы можем определить, из чего же на самом деле сделана Земля. Все данные для этого у нас есть. Потенциалы ионизации химических элементов известны. Состав первобытной туманности также знаем – он соответствует составу Солнца. Состав Солнца нам известен прекрасно, за четыре миллиарда лет горения он почти не изменился, разве что часть водорода выгорела и превратилась в гелий. Ну, еще малость лития и бериллия поизрасходовалось – на копейки буквально. А все остальное осталось в первозданной сохранности!
Таблица 1
Исходный состав протопланетного вещества в зоне формирования Земли
Решение задачки – внизу, в таблице.
Здорово, правда? И совсем не похоже на то, что рисует устоявшаяся теория. Железа тут совсем мизер. На ядро явно не хватает. Для железного ядра – такого, какое якобы есть в центре Земли, железа должно было быть как минимум 40 весовых процентов. А его вчетверо меньше… Да и с силикатной оболочкой не очень хорошо получается. Чтобы у Земли была мантия из силикатов, ей нужно как минимум 30 весовых процентов кислорода. А его в тридцать раз меньше! Но зато у нас теперь полно кремния, магния, водорода.
Кстати, о водороде…
В рамках старой «теории железного ядра и силикатной оболочки» водорода на Земле почти нет. А тот мизер, что есть, давным-давно связан кислородом и плещется в виде воды в наших кранах и океанах. Но в новой картине мира.
В новой картине мира водород переворачивает все. Буквально все! Он самым кардинальным образом меняет картину прошлого, настоящего, а главное, будущего нашей планеты.
Черт возьми, я взволнован…
Глава 3. А у вас тут уплотнение!.
Слушайте, при таком обилии водорода внутри планеты все остальные элементы там должны быть в виде гидридов, то есть соединений с водородом. Простому человеку это ни о чем не говорит. Металловеду говорит многое, очень многое. Потому что, с одной стороны, свойства металлов, насыщенных водородом, удивительны настолько, что сторонний человек может в них просто не поверить. С другой, несмотря на это, металлогидриды еще не полностью изучены, и все время подкидывают исследователям что-нибудь новенькое.
Большую часть (87 %) массы нашей планеты, как теперь выяснилось, составляют металлы – магний, железо, кальций, алюминий, натрий и кремний, который является полупроводником при обычных условиях, но при огромных давлениях в недрах Земли становится металлом, по свойствам близким к титану. Водорода же по весу всего 4,5 %. Но по количеству атомов его больше всех в нашей планете: 59 % атомов планеты – это атомы водорода (см. таблицу). Почему так получается? Потому что он очень легкий.
Водород – самое простое вещество во Вселенной. Он имеет в таблице Менделеева номер 1. То есть состоит из одного протона и одного электрона. Если водород ионизирован, то есть с его орбиты сорвало электрон, остается только ядро атома – протон. По сути, одна-единственная элементарная частица. Крохотная, беззащитная, одинокая… «Но дел успел наделать он немало», как поется в известной блатной песне.
Пара слов о растворимости водорода в металлах. Представьте себе металлический кубик со стороной в один сантиметр. Его объем, стало быть, 1 кубический сантиметр.
Как вы думаете, сколько таких же объемов водорода можно растворить в этом кубике? Половину кубика? Один кубик? Два? Может быть, семь?
Нет. Сотни, а при некоторых условиях тысячи объемов водорода можно растворить в одном объеме металла! Ну, с газообразным водородом это еще не так пробирает, а вот с жидким водородом картина становится совсем шокирующей. Жидкость, как известно, несжимаема. Но!.. В один кубический сантиметр магния можно влить полтора кубических сантиметра жидкого водорода. Это так же удивительно, как если бы в стакане чая можно было растворить полтора стакана сахара. И тем не менее сие – лабораторно установленный факт, который даже планируется использовать в технике – для производства топливных баков водородных автомобилей.
А что произойдет с нашим кубиком металла после того, как он проглотит несколько тысяч кубиков газа? Его бока раздуются, как у худой бочки, и он станет рыхлым? Нет, напротив – кубик ужмется и станет более плотным!
Стакан чая, в котором мы растворили полтора стакана сахара, ужался по половины стакана!..
Да как такое может быть?..
И что вообще означают слова «растворить газ в металле»?..
Лично для меня это не вопрос. Потому что я окончил Московский институт стали и сплавов и знаю, что в металлургии при производстве стали ее продувают водородом, чтобы лишить вредных примесей (кислорода). Как происходит продувка? По-разному. Иногда водород продувают через жидкую сталь во время ее варки. Это всем понятно… Когда кому-то говоришь, что металлурги продувают сталь водородом, люди обычно именно так и представляют себе этот процесс: жидкая сталь, продуваемая снизу пузырьками газа. Потому что есть бытовой аналог – газировка с пузырьками.
Но иногда продувку ведут и другим способом: водород продувают через раскаленные слитки, то есть через твердое тело. И водород сквозит через твердую сталь так же легко, как вода через решето. Да, собственно, именно это и происходит – крохотный водород запросто пролетает сквозь сито кристаллической решетки металла.
При растворении водорода в металле водородный атом лишается электрона и остается один голый протон, который легко просеивается внутри слитка. А электрон уходит в зону проводимости металла, то есть присоединяется к общим, коллективным электронам металла, которые свободно в нем бегают. Именно эта «коллективная собственность» на электроны и делает металлы электропроводниками. При приложении к металлическому кабелю электрического поля коллективные электроны, не принадлежащие персонально никакому атому, но принадлежащие всем атомам на правах «равной долевой собственности», начинают по проводнику свой коллективный бег, который мы называем электрическим током.
Но водород может не только физически растворяться в металле, но и вступать с ним в химическую реакцию с образованием так называемых гидридов. В гидридах водород присутствует уже не в виде голого протона, а в виде аниона, то есть протона, вокруг которого крутятся два электрона. Запомним этот важный факт: он нам понадобится через пару-тройку абзацев.
А пока выясним, как на гидриды влияют температура и давление, ведь в центре планеты очень горячо и давление там – дай боже! Оказывается, это влияние разнонаправленное. Чем больше давление, тем больше растворимость водорода в металле. Чем сильнее давишь – тем больше водорода можно натолкать в металл. И с какого-то момента водорода в металле становится так много, что уже начинает идти химическая реакция между ним и металлом – образуются уже упомянутые металлогидриды.
Температура действует ровно наоборот. Если гидриды нагревать, они начинают разлагаться, потому как с ростом температуры растворимость водорода в металле падает, и образец начинает активно «газить» водородом. Получается, что ситуация в центре планеты очень неоднозначная: давление действует в одну сторону, температура в другую. И для того, чтобы в этой ситуации разобраться, нужно ответить на несколько вопросов.