Литмир - Электронная Библиотека
Литмир - Электронная Библиотека > HORST RIESEN KASPAR & BUNKE (EN) > GRAPH CLASSIFICATION AND CLUSTERING BASED ON VECTOR SPACE EMBEDDING
GRAPH CLASSIFICATION AND CLUSTERING BASED ON VECTOR SPACE EMBEDDING
Добавить похожую книгу
Architecture Design for Soft Errors
Похожа
Непохожа
Bayesian Inference
Похожа
Непохожа
GRAPH CLASSIFICATION AND CLUSTERING BASED ON VECTOR SPACE EMBEDDING
A introductory fragment is available
Language of a book: Английский
Publisher: Gardners Books

    This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector.This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.Contents:Introduction and Basic ConceptsGraph MatchingGraph Edit DistanceGraph DataKernel MethodsGraph Embedding Using DissimilaritiesClassification Experiments with Vector Space Embedded GraphsClustering Experiments with Vector Space Embedded GraphsReadership: Professionals, academics, researchers and students in pattern recognition, machine perception/computer vision and artificial intelligence.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и комментарий вам нужно зайти на сайт или зарегистрироваться

    {"b":"510517","o":30}