Литмир - Электронная Библиотека
ALGEBRAIC INVARIANTS OF LINKS (2ND EDITION)
Author:JONATHAN HILLMAN (EN)
A introductory fragment is available
Language of a book: Английский
Publisher: Gardners Books

    This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters. Sample Chapter(s)Chapter 1: Links (205 KB)Contents:Abelian Covers:LinksHomology and Duality in CoversDeterminantal InvariantsThe Maximal Abelian CoverSublinks and Other Abelian CoversTwisted Polynomial InvariantsApplications: Special Cases and Symmetries:Knot ModulesLinks with Two ComponentsSymmetriesSingularities of Plane Algebraic CurvesFree Covers, Nilpotent Quotients and Completion:Free CoversNilpotent QuotientsAlgebraic ClosureDisc LinksReadership: Graduate students and academics in geometry and topology.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и комментарий вам нужно зайти на сайт или зарегистрироваться

    {"b":"506381","o":30}