Литмир - Электронная Библиотека

Что действительно не так?

Полезно разобрать вышеуказанный процесс и посмотреть, в чем ошибка, и поче­му это произошло. Первым и наиболее очевидным моментом является сомнительная ценность оптимизаций практически в любой форме. Любой индикатор или набор ин­дикаторов покажут огромный доход, будучи оптимизированы для получения лучшей комбинации параметров, даже при использовании случайного набора данных. Ком­пьютер анализирует миллионы комбинаций, поэтому существует очень большая веро­ятность, что некоторые из них, по крайней мере задним числом, будут делать деньги.

При столкновении с соблазном практически мгновенного обогащения, о чем сви­детельствуют вдохновляющие результаты оптимизации, искушение немедленно на­чать торговлю становится непреодолимым. Вера в процесс оптимизации настолько сильна, что трейдеры будут оптимизировать снова и снова, хотя состояние их торго­вых счетов должно было бы подсказать им, что они делают что-то не так. Это про­изошло с нашим трейдером в предыдущем примере. Вы можете услышать, как трей­дер говорит: "Только еще одна оптимизация, и я это сделаю." К сожалению, еще одна оптимизация никогда не решит проблемы.

Оптимизировать или не оптимизировать

Любому, кто верит, что полная оптимизация работает так же хорошо, как пропа­гандируется некоторыми поставщиками систем, не помешало бы прочитать "The Usefulness of Historical Data in System Parameters for Technical Trading Systems" Луиса Б. Лукаса и Б. Уэйд Брорсена. Их работа систематичная и полная. Они тестировали системы следования за трендом, прорыв канала и систему направленного движения Уайлдера, используя 20-летние данные. Единственной переменной, подвергавшейся оптимизации, было количество дней, использовавшееся в каждом вычислении. Этот параметр проходил через временной период от 2 до 60 дней с шагом в 5 дней.

Они сравнивали три различные схемы оптимизации со случайным тестом, кото­рый использовал случайные значения параметра из набора от 5 до 60 дней. Наиболее значительным открытием было то, что стратегии повторной оптимизации ничего не давали в смысле производительности системы. Каждый из методов оптимизации да­вал результаты, незначительно отличающиеся от результатов случайного теста. С использованием оптимизации или без, доходы были в районе от 50 до 60 процентов для системы прорыва канала и от 30 до 54 процентов для системы направленного движения Уайлдера. Они сформулировали следующее: "Результаты всех тестов гово-

рят, что предугадывающие возможности оптимизации ограничены. Оптимизация была не в состоянии прогнозировать набор параметров, который давал бы доход на порт­феле лучший, чем стратегия случайного выбора."

Позвольте нам особо подчеркнуть, что это был строго формальный тест, прове­денный с большим вниманием к деталям. Любой, кто утверждает, что полная оптими­зация работает лучше, чем простое слепое моделирование, столкнется с прямо проти­воположными результатами, которые были только что продемонстрированы.

Как избежать подстраивания под кривую

Некоторое подстраивание под кривую неизбежно. Было бы сложно и нежела­тельно разрабатывать техническое исследование без этого. Когда трейдер сверлит глазами график и видит, что 9-дневный RSI, кажется, лучше подходит для этого конкретного рынка, чем стандартный 14-дневный, он подстраивается под кривую. Так как это кажется простым и эффективным, остается только один шаг до тестиро­вания каждого параметра RSI. Как только этот процесс начинает давать прибыль­ные результаты, перестановки становятся практически бесконечными: "Нам лучше добавить еще несколько технических исследований, чтобы быть уверенными, что мы ничего не пропустили. Пока мы пользуемся этой системой, давайте оптимизиру­ем ее для правильного начального риска и лучших следящих остановок, чтобы она стала максимально полной." Конечным продуктом является система, заключающая в себе все лучшие побуждения и подогнанная под кривую в п-нои степени. Несмотря на то, что она хорошо выглядит на бумаге, шансы против того, что она будет рабо­тать в будущем, становятся астрономическими. Результаты оптимизации оказыва­ются прямо противоположными тем, которые казались бы очевидными. Чем лучше выглядит система и чем более полной и сложной является, тем с меньшей вероятнос­тью она добьется успеха.

Существует строгое объяснение того, почему оптимизация и подстраивание под кривую дают плохие результаты. Откровенно говоря, это настолько простая концеп­ция, что мы не можем понять, почему многие трейдеры не уделяют ей большее внимание. Каждому статистику известно понятие потери свободы. В терминах непрофессионала это значит, что каждый параметр,добавляющийся к торговой системе, представляет собой потерю степени контроля над конечной отдачей процедуры тестирования. Чем больше технических исследований или торговых правил вы вводите, тем менее здоро­выми и надежными будут результаты. Чем больше вы стараетесь улучшить систему, тем с меньшей вероятностью она будет работать так же, как при тестировании.

Вам следует иметь от двух до пяти переменных. Чем меньше переменных, тем более надежны результаты. Интересное следствие такого подхода заключается в том, что он позволяет вам оглянуться на собственную проделанную работу и быстро по­нять, является ли она подгонкой под кривую. Вероятность того, что система окажется подогнанной под кривую, напрямую зависит от количества переменных, использовавшихся при тестировании. Чем большее количество технических исследований и правил (особенно исключений из правил), тем больше модель подогнана под кривую. Остерегайтесь систем, которые настолько сложны, что требуют компьютера для того, чтобы с ними работать.

Другой путь избежать подстраивания под кривую - отказ от создания систем, настроенных на специфические рынки. Это ловушка, в которую просто попасть, и это также основной принцип подстраивания под кривую. Хорошая система не обязана исторически работать на всех рынках, чтобы быть успешной, но она должна работать на большинстве рынков с небольшим количеством изменений от рынка к рынку. Если вы должны изменять систему с тем, чтобы адаптировать ее к каждому рынку, то есть серьезный изъян в основной системе. Нам хорошо знаком тот аргумент, что каждый рынок обладает своим уникальным характером, но мы также помним времена, когда валютные фьючерсы практически не были волатильными, и времена, когда они де­монстрировали колебания стоимости контрактов на тысячи долларов в день. Рынки меняются, и лучшим способом добиться уверенности, что ваша система будет идти с ними в ногу, будет ее тестирование в неизменной форме на возможно большем количе­стве разнообразных рынков.

Прежде, чем мы оставим этот предмет, отметим еще одну более тонкую форму оптимизации. Мы говорим о практике прогонки исторических данных через компью­тер для нахождения "сезонности". Существует горстка известных трейдеров/авто­ров, которые предоставляют данные тестирования, демонстрирующие, что, если бы вы покупали конкретный товар в конкретный день каждый год и продавали его в другой конкретный день, вы бы увеличили свой доход в х раз. Это просто нонсенс, который не имеет абсолютно никакого статистического смысла или применения в торговле. Если мы захотим, аналитические возможности компьютера позволят нам оптимизировать данные вместо системы. Данные рассматриваются очень маленькими сегментами для получения точных дат, которые лучше всего подходили бы системе. Вместо подгонки под кривую системы, мы можем подогнать под кривую данные. Ко­нечно, существует множество очевидно логичных и иногда пригодных для использо­вания долгосрочных сезонностей (например, ежегодные падения цен во время сбора урожая), но остерегайтесь доводить следование сезонностям до абсурда. Любая се­зонная рекомендация по торговле, более специфичная, чем указание лучшего месяца для торговли, должна восприниматься с большим подозрением.

41
{"b":"960311","o":1}