Литмир - Электронная Библиотека
A
A

На обратном пути в Афины меня грызла совесть. Впервые я усомнился в своих действиях. Что, если моя властная установка, нацеленная на излечение дяди Петроса, была всего лишь попыткой сквитаться, отомстить за унижение моего подросткового «я»? И если даже это не так, какое имел я право заставлять бедного старика глядеть на призраки прошлого вопреки его собственной воле? Учел ли я серьезность всех последствий моего непростительного ребячества? Вопросов без ответов хватало, но все равно я, приехав домой, уже уговорил себя, что поступил высокоморально: огорчение, которое я причинил дяде Петросу, было, вероятнее всего, необходимым – да просто обязательным – шагом в процессе его освобождения. Просто я сказал ему слишком много, чтобы переварить за один раз. Очевидно, бедняге нужно теперь только спокойно обдумать положение вещей. Он должен сначала признать неудачу наедине с собой и лишь потом передо мной…

Но если так, зачем ему пять килограммов фасоли?

У меня в голове стала возникать гипотеза, но она была слишком неприятной, чтобы рассматривать ее серьезно – по крайней мере до утра.

В мире ничто, по сути, не ново – и уж точно не новы высокие драмы духа человеческого. И даже когда такая драма кажется оригинальной, при более пристальном анализе выясняется, что ее уже играли – конечно, с другими действующими лицами и, вполне вероятно, с возможными вариациями сюжета. Но главные конфликты, основные допущения – все из того же старого сюжета.

Драма, разыгранная в последние дни жизни Петроса Папахристоса, является последней в триаде эпизодов истории математики, объединенных общим сюжетом: «Таинственное решение знаменитой проблемы серьезным математиком» [32].

По общему мнению, тремя главными знаменитыми нерешенными проблемами являются: а) Последняя теорема Ферма, б) Гипотеза Римана и в) Проблема Гольдбаха.

В случае последней теоремы Ферма таинственное решение существует с момента самой формулировки теоремы в 1637 году. Пьер де Ферма, изучая «Арифметику» Диофанта и делая заметки на полях книги, сделал заметку рядом с предложением II.8, относящимся к теореме Пифагора в виде х2 + у2 = z 2. Ферма написал: «Невозможно представить куб как сумму двух кубов или биквадрат (четвертую степень) в виде суммы биквадратов, и вообще любую степень, кроме квадрата, в виде суммы двух степеней с тем же показателем. Мне удалось найти поистине чудесный способ это доказать, но здесь на полях это доказательство не поместится».

После смерти Ферма его сын собрал и опубликовал его заметки. Однако тщательное изучение его бумаг не обнаружило этого demonstratio mirabiblis - «чудесного доказательства», которое отец, по его утверждению, нашел. И так же тщетно пытались математики найти его снова [33]. Что же насчет мнения истории об этом таинственном решении, то вердикт ее гласит: сомнительно. Многие из современных математиков не верят, что Ферма действительно знал доказательство. Теория крайнего случая утверждает, что если он не лгал намеренно, то не проверил доказательство, и заметка на полях – просто хвастовство. Однако более вероятно, что он искренне ошибался и demonstratio mirabilis страдало необнаруженным дефектом.

В случае гипотезы Римана таинственное решение на самом деле было дурацкой метафизической шуткой в исполнении Г. X. Харди. Вот как это случилось:

Готовясь переехать на пароме Ла-Манш, закоренелый атеист Харди отправил одному коллеге открытку с фразой: «Я только что доказал гипотезу Римана». Смысл был в том, что Всемогущий, с которым Харди был всю жизнь на ножах, не позволит ему пожать незаслуженную славу и потому обеспечит безопасное путешествие – чтобы обнажить лживость слов Харди.

И завершает триаду таинственных решений проблема Гольдбаха.

Наутро после нашего последнего урока я позвонил дяде. Он, по моему настоянию, согласился провести себе телефон с тем условием, что номер буду знать только я.

Ответил он далеким и недружелюбным голосом:

– Что тебе нужно?

– Да я просто так звоню, узнать, как дела. И еще извиниться. Я вчера был совершенно неоправданно груб.

Долгая пауза.

– Н-ну, – сказал дядя Петрос, – вообще-то я сейчас занят. Слушай, позвонил бы ты, ну, скажем… на следующей неделе?

Я хотел бы отнести его холодный тон за счет того, что он на меня обиделся (имея, в конце концов, на то все права) и просто выражает свое недовольство. И все же что-то свербило у меня в душе.

– А чем ты занят, дядя? – не отстал я.

Еще одна пауза.

– Я… я тебе в другой раз расскажу.

Он явно рвался закончить разговор, и потому я, пока он не успел повесить трубку, бухнул напрямик:

– Дядя, ты, что ли, снова вернулся к той работе? Я услышал резкий вдох.

– Кто… кто тебе сказал? – спросил хриплый голос дяди.

Я попытался ответить небрежно:

– Ну, дядя, я же тебя все-таки знаю. Тут и говорить не надо было.

Раздался щелчок – он повесил трубку. Я был прав – этот псих окончательно слетел с нарезки. Он снова пытался решить проблему Гольдбаха!

Я почувствовал жало больной совести. Что я натворил? Человек не может вынести большой дозы реальности – и теория Сэмми о безумии Курта Гёделя была приложима, хотя и по-другому, к дяде Петросу. Я подтолкнул бедного старика к последней грани и вытолкнул за нее, целил точно в его ахиллесову пяту и попал. Мой смехотворный расчет – заставить его схватиться с самим собой – разрушил его хилую оборону. Я безответственно, необдуманно лишил его тщательно питаемого оправдания – теоремы о неполноте, и ничего не дал взамен, чем поддержать пошатнувшийся образ самого себя. Судя по его крайней реакции, обнажение его провала (перед ним, не передо мной) оказалось больше, чем он мог вынести. Иначе зачем он в свои без малого восемьдесят бросился искать доказательство, которое не мог найти на пике своего расцвета? Если это не безумие, то что?

Я вошел в офис моего отца с нехорошим предчувствием. Как ни противно мне было впускать его в заколдованный круг моих отношений с дядей Петросом, я считал себя обязанным сказать ему о том, что произошло. В конце концов это был его брат, а подозрение на серьезную болезнь – это дело семейное. Мой отец сразу отмел как чушь мои самообвинения в том, что я вызвал кризис. Согласно официальному мировоззрению Папахристосов, человек за свое психологическое состояние отвечает сам, и единственной приемлемой внешней причиной эмоционального расстройства может быть только повышение или падение курса акций. С точки зрения отца, поведение старшего брата всегда было странным, и дополнительные проявления эксцентричности всерьез принимать не следует.

– На самом деле, – сказал он, – состояние, которое ты описываешь – рассеянность, самопоглощенность, резкие смены настроений, странное требование бобов среди ночи, нервный тик и прочее, – напоминает мне его поведение в Мюнхене в конце двадцатых годов. Тогда он тоже вел себя как ненормальный. Мы сидели в хорошем ресторане и ели чудесный вурст [34], а он все вертелся на стуле, будто на гвоздях, и лицо у него дергалось, как у сумасшедшего.

– Quod erat demonstrandum, - сказал я. – Так оно и есть. Он снова вернулся к математике. Он на самом деле работает над проблемой Гольдбаха – как это ни смехотворно в его возрасте.

Отец пожал плечами:

– Это в любом возрасте смехотворно. Но чего нам беспокоиться? Проблема Гольдбаха уже принесла ему все зло, которое могла. Хуже уже не будет.

Но я не был в этом так уверен. На самом деле я был вполне уверен, что впереди нас ждет намного худшее. Воскрешение Гольдбаха не могло не всколыхнуть неудовлетворенные страсти, не разбередить погребенные глубоко в душе страшные, незалеченные раны. Ничего хорошего не могло выйти из его нового обращения к старой проблеме.

вернуться

[32] Таинственные решения знаменитых проблем шарлатанами продаются сотнями на грош в базарный день. – Примеч. автора.

вернуться

[33] Удивительно, но последняя теорема Ферма была доказана в 1993 году. Сперва Герхард Фрей предположил, что проблема, возможно, сводится к некоей недоказанной гипотезе в теории эллиптических кривых, так называемой гипотезе Танияма – Шимура – прозрение, впоследствии строго доказанное Кеном Райбетом. Ключевое доказательство гипотезы Танияма – Шимура (а тем самым – и последней теоремы Ферма) дал Эндрю Уайлз; на последнем этапе своей работы он сотрудничал с Ричардом Тейлором. – Примеч. автора.

вернуться

[34] колбаса (нем.)

30
{"b":"95790","o":1}