Литмир - Электронная Библиотека
Содержание  
A
A

Конструктор «Наттера» следовал той же идее, которая привела Липпиша к проекту «ракеты-тарана», однако таранный удар был здесь заменен ракетной атакой. Германские ВВС одобрили проект «Наттера», и после испытаний модели в сверхзвуковой аэродинамической трубе в Брауншвейге было построено 15 опытных образцов «Наттера». Планерные испытания прошли весьма неудовлетворительно, но все же после их окончания был предпринят взлет с пилотом, который кончился плохо и для «Наттера», и для его пилота. Приблизительно на высоте 150м крышка кабины пилота оторвалась. Так как головная опора пилота крепилась к ней, то, вероятно, пилот погиб в тот же момент от перелома позвоночника. Но «Наттер» продолжал набирать высоту, летя под углом примерно 15°. На высоте 1500 м, очевидно, прекратилась подача топлива, «Наттер» перевернулся, спикировал и врезался в землю.

К концу войны количество «Наттеров», заказанных фирме «Бахемверке», достигло 200, из них 50 штук заказали ВВС и 150—войска СС. Тем не менее в боевых действиях они не участвовали. Говорят, что германское правительство обещало передать планы этого вооружения японцам, но никто не знает, было ли это обещание выполнено.

Японцы создали пилотируемый самолет-снаряд другого типа. Это были так называемые «камикадзе» — самолеты, управлявшиеся пилотами-смертниками. Практически в качестве «камикадзе» мог использоваться самолет любого типа, способный нести заряд взрывчатого вещества и пикировать на цель. Но один из них - «Бака» - был специально создан для таких атак. Длина его составляла всего 6 м, а размах крыльев — 5 м. В носовой части помещался боевой заряд весом 540 кг. Двигательная установка была представлена несколькими большими пороховыми ракетами. «Бака» переносился бомбардировщиком «Бетти», причем оба пилота были связаны по телефону до тех пор, пока пилот самолета-носителя не решал, что наступил момент выпустить самолет-смертник.

Вопрос о создании ракетных самолетов в США был поднят примерно в то же время, что и в Германии. В декабре 1944 года командование армейской авиации обратилось к инженерам фирмы «Белл Эркрафт» с заказом спроектировать для исследовательских целей пилотируемый самолет с ракетным двигателем. Проект был осуществлен уже после войны; он преследовал цель накопления информации о полете на околозвуковых и сверхзвуковых скоростях.

По мере того как возрастала скорость самолетов, пилоты все чаше и чаше замечали странные явления в поведении их машин. Так, например, движение плоскостей управления на больших скоростях приводило к прямо противоположному результату. Тогда стали говорить о так называемом «эффекте компрессии», о «числе Маха» и о «звуковом барьере», который может-де быть преодолен только силой. Многие шутили, что в небе появилась «кирпичная стена». В целом же это было нагромождение неправильно понятых фактов, принимаемых на веру слухов и недостаточно усвоенных теоретических концепций, сцементированных суеверием.

Курсантам военных училищ во время войны настойчиво внушали, что никто не может достичь скорости звука, то есть числа Маха, равного 1 (М=1). Курсанты тщательно записывали это в свои тетради, а в это же время где-нибудь совсем рядом призывники вели учебный зенитный огонь. Снаряды вылетали из стволов пушек со скоростью М=3, и никому это не казалось удивительным.

Число Маха названо так по имени австрийского физика доктора Эрнста Маха, который впервые исследовал данную проблему. Скорость распространения звука при средней температуре составляет около 1200 км/час[55].

Но не на всякой высоте самолет, летящий со скоростью 1200 км/час, летит со скоростью звука. На высоте 1,5 км, например, скорость звука уже не та, что на уровне моря, а на высоте 5 км она еще больше отличается от нее. Помимо этого воздух на разных высотах имеет неодинаковую плотность, а поэтому и скорость самолета при прочих равных условиях также будет различной. Для определения соотношения между скоростью движущегося предмета и скоростью звука введено число Маха, определяемое по формуле:

Ракеты и полеты в космос - f5.png

где М — число Маха, v — скорость самолета, или «истинная воздушная скорость», и Сзв, — скорость звука на данной высоте.

Многие полагают, что изменение числа Маха вызывается различной плотностью воздуха на разных высотах. Отчасти это так, ибо с изменением плотности воздуха меняются и летные характеристики самолета. Но вообще скорость звука не имеет ничего общего с плотностью воздуха; она полностью зависит от температуры воздуха[56].

В соответствии с числом Маха авиационные инженеры делят все скорости движения в воздухе на три группы: дозвуковые (от М=0 до М=0,8), околозвуковые (от М=0,85 до М = 1,3) и сверхзвуковые (свыше М= 1,3). На первый взгляд может показаться, что вполне достаточно делить все скорости на дозвуковые и сверхзвуковые. Однако введение промежуточной категории — околозвуковая скорость — совершенно необходимо. Дело в том, что вокруг тела, движущегося, скажем, со скоростью М = 0,9, поток воздуха может быть в некоторых точках сверхзвуковым, а в остальных — дозвуковым. Скорости второй категории можно назвать и скоростями смешанного потока, но слово «околозвуковая» является более коротким и терминологичным.

При дозвуковой скорости воздух на пути самолета не сжимается им, подобно газу в замкнутом цилиндре, сжимаемому поршнем. Когда же скорость самолета становится сверхзвуковой, воздух не может уйти с его пути и действительно сжимается даже в открытом пространстве. Физики объясняют это тем, что при сверхзвуковой скорости полета область, находящаяся впереди снаряда или самолета, является «областью отсутствия звукового сигнала».

Ракеты и полеты в космос - _80.png

Рис. 80. Образование «конуса Маха».

Эта «область отсутствия сигнала» лежит вне «конуса Маха» (рис. 80). За счет сжатия воздуха здесь, если можно так выразиться, создается источник колебаний, или «импульсная точка». До тех пор пока эта «импульсная точка» неподвижна, возбуждаемые ею ударные волны распространяются концентрически, постепенно затухая. По мере удаления этих концентрических волн от «импульсной точки» их поверхность увеличивается и они слабеют. Когда источник колебаний начинает двигаться, сферы звуковых (несущих «сигнал») и ударных волн теряют концентрическую форму; «сигнал» замедляется. А когда скорость «импульсной точки» превысит скорость звука, «сигнал», то есть звуковая волна, отстанет от нее. Рис. 81 показывает графически, как это явление выглядит на фотоснимках артиллерийских снарядов, сделанных по методу «шлиренкинематографии»[57].

Ракеты и полеты в космос - _81.png

Рис. 81. Схема распространения ударных волн, образуемых 156-мм американским снарядом «Лонг Том» на разных скоростях полета.

Но не только это отличает дозвуковые скорости полета от сверхзвуковых. Предположим, что воздух с дозвуковой скоростью проходит через трубу. Пока труба остается прямой, скорость потока не меняется. Но если сделать трубу постепенно уменьшающегося диаметра, то поток воздуха будет набирать скорость.Скорость потока может достигнуть М= 1, если наше сопло будет достаточно длинным. Сверхзвуковой поток в таком сопле, наоборот, замедляется. В расширяющемся (расходящемся) сопле дозвуковой поток замедляется, а сверхзвуковой - увеличивает скорость (рис. 82). Вот почему сопло ракетного двигателя сначала сходится, чтобы разогнать дозвуковой поток до скорости звука, а затем расширяется, чтобы максимально увеличить эффективную скорость истечения.

Ракеты и полеты в космос - _82.png
вернуться

55

Скорость звука в воздухе при температуре +15°С равна 1224 км/час. ( Прим. ред.)

вернуться

56

С понижением температуры воздуха скорость распространения звука уменьшается, и наоборот. Эта зависимость определяется по формуле:

Ракеты и полеты в космос - f6.png

где К - коэффициент удельной теплоемкости (1,4 для атмосферного воздуха), R - универсальная газовая постоянная и Т - абсолютная температура. ( Прим. ред.)

вернуться

57

Метод киносъемки, заключающийся в том, что луч света, проходящий через какую-либо неоднородную среду, фотографируется с целью выяснения степени его преломления в различных участках среды, имеющих неодинаковую плотность, температуру и т. п. Применяется для съемок ударной волны. (Прим. ред.)

85
{"b":"947024","o":1}