Несмотря на это, в недавние годы проблема природы света подверглась, как вы все знаете, новому обсуждению в связи с обнаружением в механизме передачи энергии важного свойства атомистичности, совершенно непонятного с точки зрения электромагнитной теории. Действительно, всякая передача энергии светом может быть прослежена вплоть до индивидуальных актов, в каждом из которых передается так называемый световой квант; энергия его равна произведению частоты электромагнитных колебаний на квант действия (постоянную Планка). Очевидная противоположность между такого рода атомистичностью светового эффекта и вытекающей из электромагнитной теории непрерывностью распространения энергии ставит перед нами дилемму такого характера, какой до сих пор не был известен в физике. Так, несмотря на явную недостаточность волновой картины распространения света, не может быть и речи о замене ее какой-нибудь другой картиной, которая опиралась бы на обычные механистические понятия. Следует особо подчеркнуть, что световые кванты не могут рассматриваться как частицы, которым можно было бы приписать точно определенный путь в смысле обычной механики. Если бы мы, желая убедиться в том, что световая энергия идет только по одному из двух путей между источником и экраном, задержали один из лучей непрозрачным телом, то интерференционные полосы исчезли бы начисто; совершенно так же и в любом явлении, для которого существенна волновая природа света, невозможно проследить путь индивидуального светового кванта, не нарушая существенно само исследуемое явление. Действительно, пространственная непрерывность распространения света в нашей картине и атомистичность световых эффектов являются дополнительными аспектами одного и того же явления. Дополнительность мы понимаем в том смысле, что оба аспекта отображают одинаково важные свойства световых явлений, причем эти свойства не могут вступать в явное противоречие друг с другом, поскольку более подробный анализ их на основе понятий механики потребовал бы взаимно исключающих экспериментальных установок. В то же время самая эта ситуация заставляет нас отказаться от полного причинного описания световых явлений и удовольствоваться вероятностными законами, основанными на том факте, что электромагнитное описание передачи энергии остается справедливым в статистическом смысле. Последнее заключение представляет типичное приложение так называемого принципа соответствия, выражающего стремление до предела использовать понятия классических теорий — механики и электродинамики, — несмотря на противоположность между этими теориями и квантом действия.
На первый взгляд такая ситуация может показаться крайне неприятной. Но в науке и раньше случалось, что новые открытия приводили к установлению существенных ограничений для понятий, которые до тех пор считались не допускающими исключений. В таких случаях нас вознаграждает приобретение более широкого кругозора и более широких возможностей устанавливать связь между явлениями, которые прежде могли казаться даже противоречащими друг другу. И в самом деле, ограничение классической механики, символизируемое квантом действия, дало нам ключ к пониманию свойственной атомам устойчивости, на которой существенно основано механистическое описание природы. Конечно, фундаментальной чертой атомной теории всегда была невозможность понять неделимость атомов, оставаясь в рамках механических понятий; это положение практически не изменилось и после того, как неделимость атомов была заменена неделимостью электронов и протонов, из которых построены атомы и молекулы. Но я говорил выше не об устойчивости, свойственной этим элементарным частицам, а об устойчивости состоящих из них атомных структур. Если мы подойдем к этой проблеме с точки зрения механики или электромагнитной теории, то мы не найдем достаточной основы для объяснения не только характерных свойств элементов, но даже и самого существования твердых тел (а на них в конечном счете опираются все измерения, служащие для локализации явлений природы в пространстве и времени). Эти затруднения теперь преодолены благодаря признанию того факта, что всякое поддающееся определению изменение атома есть индивидуальный акт, состоящий в полном переходе атома из одного его так называемого стационарного состояния в другое. Кроме того, раз в процессе перехода, в котором атом поглощает или испускает свет, происходит обмен только одним световым квантом, мы можем при помощи спектроскопических наблюдений непосредственно измерить энергию каждого из этих стационарных состояний. Полученные таким образом сведения были весьма убедительно подтверждены изучением того обмена энергией, который происходит при атомных столкновениях и при химических реакциях.
За последние годы произошло поразительное развитие атомной механики в направлении, указанном принципом соответствия. Благодаря этому наше теоретическое отображение (account) свойств атомов стало столь же полным, как отображение астрономических данных ньютоновой механикой. Несмотря на всю сложность общих проблем атомной механики, для ее развития оказался чрезвычайно важным урок, преподанный нам анализом более простых световых эффектов. Так, между однозначным применением понятия стационарных состояний и механическим анализом внутриатомных движений существует то же соотношение дополнительности, какое существует между световым квантом и электромагнитной теорией излучения. Действительно, всякая попытка подробно проследить, как протекает процесс перехода, повлекла бы за собой неконтролируемый обмен энергией между атомом и измерительным прибором, что совершенно нарушило бы тот самый баланс энергии, который мы собирались исследовать. Причинное согласование опытных данных по законам механики выполнимо только в тех случаях, где действие велико по сравнению с квантом и где поэтому возможно подразделение явления. Если это условие не выполнено, то нельзя пренебрегать действием измерительного прибора на исследуемый объект; действие же это влечет за собой несовместимость различных типов информации, которые все необходимы для полного механистического описания в обычном смысле. Эта кажущаяся неполнота механического анализа атомных явлений в конечном счете происходит от присущей всякому измерению неопределенности в реакции объекта на измерительные приборы. Напомним, что общее понятие относительности выражает существенную зависимость всякого явления от системы отсчета, которой пользуются для его локализации в пространстве и времени. Подобно этому, понятие дополнительности служит для того, чтобы символизировать имеющееся в атомной физике существенное ограничение понятия объективно существующего явления в смысле явления, не зависимого от способов его наблюдения.
Этот пересмотр основ механики, затрагивающий самое понятие физического объяснения, не только важен для полного понимания положения в атомной физике, но и создает новый фон для дискуссии о проблемах жизни в их связи с физикой. Это никоим образом не значит, что в атомных явлениях мы встречаем черты более близкого сходства со свойствами живых организмов, чем это наблюдается в обычных физических явлениях. На первый взгляд может показаться, что существенно статистический характер атомной механики противоречит поразительно утонченной организации живых существ. Однако мы должны помнить, что как раз этот дополнительный способ описания и оставляет место для тех закономерностей атомных процессов, которые чужды механике; он столь же важен для нашего отчета о поведении живых организмов, как и для объяснения специфических свойств неорганической материи. Так, в ассимиляции растениями углерода, от которой так сильно зависит также и питание животных, мы имеем дело с явлением, для понимания которого, несомненно, существенна индивидуальность фотохимических процессов. Точно так же немеханическая устойчивость атомных структур явно проявляется в характерных свойствах таких очень сложных химических соединений, как хлорофилл или гемоглобин, играющих фундаментальную роль в механизме растительной ассимиляции и в дыхании животных. Однако аналогии из области обычных химических фактов, вроде старого сравнения жизни с огнем, дадут, конечно, не более удовлетворительное объяснение живых организмов, чем дает их сопоставление с таким чисто механическим устройством, как часовой механизм. В самом деле, важные характерные особенности живых существ надо искать в их своеобразной организации, в которой свойства, поддающиеся анализу на основе обычной механики, так переплетаются с типично атомными чертами, как никогда не бывает в неорганической материи.