Блокировка памяти
B целом, принятие решений о том, какие страницы следует оставить в физической памяти, лучше сохранить за диспетчером памяти. Однако в особых обстоятельствах можно подкорректировать работу диспетчера памяти. Существует два способа блокировки страниц в памяти.
• Windows-приложения могут блокировать страницы в рабочем наборе своего процесса через функцию VirtualLock. Максимальное число страниц, которые процесс может блокировать, равно минимальному размеру его рабочего набора за вычетом восьми страниц. Следовательно, если процессу нужно блокировать большее число страниц, он может увеличить минимальный размер своего рабочего набора вызовом функции SetProcessWorkingSetSize (см. раздел «Управление рабочим набором» далее в этой главе).
• Драйверы устройств могут вызывать функции режима ядра MmProbeAndLockPages, MmLockPagableCodeSection и MmLockPagableSectionByHandle. Блокированные страницы остаются в памяти до снятия блокировки. Хотя число блокируемых страниц не ограничивается, драйвер не может блокировать их больше, чем это позволяет счетчик доступных резидентных страниц.
Гранулярность выделения памяти
Windows выравнивает начало каждого региона зарезервированного адресного пространства в соответствии с гранулярностью выделения памяти (allocation granularity). Это значение можно получить через Windows-функцию GetSystemInfo. B настоящее время оно равно 64 Кб. Такая величина выбрана из соображений поддержки будущих процессоров с большим размером страниц памяти (до 64 Кб) или виртуально индексируемых кэшей (virtually indexed caches), требующих общесистемного выравнивания между физическими и виртуальными страницами (physical-to-virtual page alignment). Благодаря этому уменьшается риск возможных изменений, которые придется вносить в приложения, полагающиеся на определенную гранулярность выделения памяти. (Это ограничение не относится к коду Windows режима ядра — используемая им гранулярность выделения памяти равна одной странице.)
Windows также добивается, чтобы размер и базовый адрес зарезервированного региона адресного пространства всегда был кратен размеру страницы. Например, системы типа x86 используют страницы размером 4 Кб, и, если вы попытаетесь зарезервировать 18 Кб памяти, на самом деле будет зарезервировано 20 Кб. A если вы укажете базовый адрес 3 Кб для 18-килобайтного региона, то на самом деле будет зарезервировано 24 Кб.
Разделяемая память и проецируемые файлы
Как и большинство современных операционных систем, Windows поддерживает механизм разделения памяти. Разделяемой (shared memory) называется память, видимая более чем одному процессу или присутствующая в виртуальном адресном пространстве более чем одного процесса. Например, если два процесса используют одну и ту же DLL, есть смысл загрузить ее код в физическую память лишь один раз и сделать ее доступной всем процессам, проецирующим эту DLL (рис. 7–1).
Каждый процесс поддерживает закрытые области памяти для хранения собственных данных, но программные инструкции и страницы немодифицируемых данных в принципе можно использовать совместно с другими процессами. Как вы еще увидите, такой вид разделения реализуется автоматически, поскольку страницы кода в исполняемых образах проецируются с атрибутом «только для выполнения», а страницы, доступные для записи, — с атрибутом «копирование при записи» (copy-on-write) (см. раздел «Копирование при записи» далее в этой главе).
Для реализации разделяемой памяти используются примитивы диспетчера памяти, объекты «раздел», которые в Windows API называются объектами «проекция файла» (file mapping objects). Внутренняя структура и реализация этих объектов описывается в разделе «Объекты-разделы» далее в этой главе.
Этот фундаментальный примитив диспетчера памяти применяется для проецирования виртуальных адресов в основной памяти, страничном файле или любых других файлах, к которым приложение хочет обращаться так, будто они находятся в памяти. Раздел может быть открыт как одним процессом, так и несколькими; иначе говоря, объекты «раздел» вовсе не обязательно представляют разделяемую память.
Объект «раздел» может быть связан с открытым файлом на диске (который в этом случае называется проецируемым) или с переданной памятью (для ее разделения). Разделы, проецируемые на переданную память, называются разделами, поддерживаемыми страничными файлами (page file backed sections), так как при нехватке памяти их страницы перемещаются в страничный файл. (Однако Windows может работать без страничного файла, и тогда эти разделы «поддерживаются» физической памятью.) Разделяемые переданные страницы, как и любые другие страницы, видимые в пользовательском режиме (например, закрытые переданные страницы), всегда обнуляются при первом обращении к ним.
Для создания объекта «раздел» используется Windows-функция Create-FileMapping, которой передается описатель проецируемого файла (или INVALID_HANDLE_VALUE в случае раздела, поддерживаемого страничным файлом), а также необязательные имя и дескриптор защиты. Если разделу присвоено имя, его может открыть другой процесс вызовом OpenFileMapping. Кроме того, вы можете предоставить доступ к объектам «раздел» через наследование описателей (определив при открытии или создании описателя, что он является наследуемым) или их дублирование (с помощью Duplicate-Handle). Драйверы также могут манипулировать объектами «раздел» через функции ZwOpenSection, ZwMapViewOfSection и ZwUnmapViewOfSection.
Объект «раздел» может ссылаться на файлы, длина которых намного превышает размер адресного пространства процесса. (Если раздел поддерживается страничным файлом, в нем должно быть достаточно места для размещения всего раздела.) Используя очень большой объект «раздел», процесс может проецировать лишь необходимую ему часть этого объекта, которая называется представлением (view) и создается вызовом функции MapViewOfFiIe с указанием проецируемого диапазона. Это позволяет процессам экономить адресное пространство, так как на память проецируется только представление объекта «раздел».
Windows-приложения могут использовать проецирование файлов для упрощения ввода-вывода в файлы на диске, просто делая их доступными в своем адресном пространстве. Приложения — не единственные потребители объектов «раздел»: загрузчик образов использует их для проецирования в память исполняемых образов, DLL и драйверов устройств, а диспетчер кэша — для доступа к данным кэшируемых файлов. (Об интеграции диспетчера кэша с диспетчером памяти см. в главе 11.) O реализации разделов совместно используемой памяти мы расскажем потом.
ЭКСПЕРИМЕНТ: просмотр файлов, проецируемых в память
Просмотреть спроецированные в память файлы для какого-либо процесса позволяет утилита Process Explorer от Sysinternals. Для этого настройте нижнюю секцию ее окна на режим отображения DLL. (Выберите View, Lower Pane View, DLLs.) Заметьте, что это не просто список DLL, — здесь представлены все спроецированные в память файлы в адресном пространстве процесса. Некоторые являются DLL, один из них — файлом выполняемого образа (EXE), а другие элементы списка могут представлять файлы данных, проецируемые в память. Например, на следующей иллюстрации показан вывод Process Explorer применительно к процессу Microsoft PowerPoint, в адресное пространство которого загружен документ PowerPoint.
Для поиска спроецированных в память файлов щелкните Find, DLL. Это удобно, когда нужно определить, какие процессы используют DLL, которую вы пытаетесь заменить.