• 4-байтовые сетевые адреса, используемые протоколом IPv4 в стандартном стеке протоколов TCP/IP, ограничивают число общедоступных IР-адресов примерно до 4 миллиардов. И это становится серьезной проблемой, поскольку в Интернете появляется все больше и больше устройств, таких как сотовые телефоны и КПК. По этой причине начинается внедрение протокола IPv6, в котором каждый адрес имеет 16 байтов. B Windows XP (Service Pack 1 и выше) и Windows Server 2003 включен стек TCP/IP, \Win-dows\System32\Drivers\Tcpip6.sys, реализующий IPv6. Windows-реализация IPv6 совместима с сетями на основе IPv4 за счет туннелирования.
• NWLink состоит из протоколов Novell IPX и SPX. NWLink включен в Windows для взаимодействия с серверами Novell NetWare.
• Протокол AppleTalk используется в сетях Apple Macintosh; его поддержка позволяет Windows взаимодействовать со службами доступа к файлам и принтерам в сетях на основе AppleTalk.
B Windows транспорты TDI в общем случае реализуют все протоколы, сопоставленные с основным стеком протоколов. Например, драйвер TCP/IP IPv4 (\Windows\System32\Drivers\Tcpip.sys) реализует протоколы TCP, UDP, IP, ARP, ICMP и IGMP Для представления конкретных протоколов транспорт TDI обычно создает объекты «устройство», что позволяет клиентам получать объект «файл», представляющий нужный протокол, и выдавать ему запросы на сетевой ввод-вывод с использованием IRP Драйвер TCP/IP создает несколько объектов «устройство» для представления различных протоколов, доступных клиентам TDI: \Device\Tcp, \Device\Udp и \Device\Ip, а также (в Windows XP и Windows Server 2003) \Device\Rawip и \Device\Ipmulticast.
ЭКСПЕРИМЕНТ: просмотр объектов «устройство», принадлежащих TCP/IP
C помощью отладчика ядра можно изучить эти объекты в работающей системе. Команда !drvobj позволяет узнать адрес каждого объекта «устройство» драйвера, a !devobj — просмотреть имя и другие сведения о конкретном объекте.
Microsoft определила стандарт TDI (Transport Driver Interface), чтобы драйверам сетевых API не приходилось использовать отдельные интерфейсы для каждого необходимого им транспортного протокола. Как уже говорилось, интерфейс TDI фактически представляет собой правила форматирования сетевых запросов в IRP, а также выделения сетевых адресов и коммуникационных соединений. Транспортные протоколы, отвечающие стандарту TDI, экспортируют интерфейс TDI своим клиентам, в число которых входят драйверы сетевых API, например AFD и редиректор. Транспортный протокол, реализованный в виде драйвера устройства Windows, называется транспортом TDI. Поскольку транспорты TDI являются драйверами устройств, они преобразуют получаемые от клиентов запросы в формат IRP.
Интерфейс TDI образуют функции поддержки из библиотеки \Windows\ System32\Drivers\Tdi.sys вместе с определениями, включаемыми разработчиками в свои драйверы. Модель программирования TDI очень напоминает таковую в Winsock. Устанавливая соединение с удаленным сервером, клиент TDI выполняет следующие действия.
1. Чтобы выделить адрес, клиент создает и форматирует TDI IRP-пакет address open. Транспорт TDI возвращает объект «файл», который представляет адрес и называется объектом адреса (address object). Эта операция эквивалентна вызову Winsock-функции bind.
2. Далее клиент создает и форматирует TDI IRP-пакет connection open, a транспорт TDI возвращает объект «файл», который представляет соединение и называется объектом соединения (connection object). Эта операция эквивалентна вызову Winsock-функции socket.
3. Клиент сопоставляет объект соединения с объектом адреса с помощью TDI IRP-пакета associate address (для этой операции эквивалентных функций Winsock нет).
4. Клиент TDI, соглашающийся установить удаленное соединение, выдает TDI IRP-пакет listen, указывая для объекта соединения максимальное число подключений. После этого он выдает TDI IRP-пакет accept, обработка которого заканчивается либо установлением соединения с удаленной системой, либо ошибкой. Эти операции эквивалентны вызову Winsock-функций listen и accept.
5. Клиент TDI, которому нужно установить соединение с удаленным сервером, выдает TDI IRP-пакет connect, указывая объект соединения, выполняемый транспортом TDI после установления соединения или появления ошибки. Выдача TDI IRP-пакета connect эквивалентна вызову Winsock-функции connect.
TDI также поддерживает коммуникационную связь, не требующую логических соединений, для протоколов соответствующего типа, например для UDP. Кроме того, TDI предоставляет клиенту TDI средства для регистрации в транспортах TDI своих функций обратного вызова по событиям (event callbacks) (т. е. функций, вызываемых напрямую). Например, при получении данных через сеть транспорт TDI может вызвать зарегистрированную клиентом функцию обратного вызова для приема данных. Поддержка функций обратного вызова на основе событий позволяет транспорту TDI уведомлять своих клиентов о сетевых событиях, а клиенты, использующие такие функции, могут не выделять ресурсы для приема данных из сети, поскольку им доступно содержимое буферов, предоставляемых драйвером протокола TDL.
ЭКСПЕРИМЕНТ: наблюдаем активность, связанную с TDI
Утилита TDImon (wwwsysinternats.com) является разновидностью драйвера фильтра, который подключается к объектам «устройство» \Device\Tcp и \Device\Udp, создаваемым драйвером TCP/IP. После подключения TDImon может наблюдать за каждым IRP, выдаваемым клиентами TDI своим протоколам. TDImon также может отслеживать функ ции обратного вызова по событиям, перехватывая запросы на их регистрацию от клиентов TDI Драйвер TDImon посылает информацию об активности TDI своему графическому пользовательскому интерфейсу, который и отображает эти сведения (время операции, тип активности TDI, локальный и удаленный адреса TCP-соединения или локальный адрес конечной точки UDP, код статуса IRP и др.). Ниже приведен экранный снимок окна TDImon, в котором ведется мониторинг активности TDI при просмотре Web-страницы в Internet Explorer.
Как доказательство «врожденной» асинхронности операций TDI, в колонке Result выводятся сообщения «PENDING». Это говорит о том, что операция инициирована, но обработка IRP, вызвавшего ее выполнение, еще не завершена. Чтобы было видно, в каком порядке одни операции завершаются относительно начала других, факт выдачи каждого IRP или обращения к функции обратного вызова отмечается своим порядковым номером. Если до завершения обработки данного IRP генерируются или завершаются другие IRP, эти факты также отмечаются соответствующими порядковыми номерами, которые показываются в колонке Result. Например, на нашей иллюстрации IRP 1278 завершился после генерации IRP 1279, поэтому в колонке Result для IRP 1278 выводится число 1280.
Расширения TCP/IP
Ряд сетевых сервисов Windows расширяет базовые сетевые возможности драйвера TCP/IP за счет применения драйверов-надстроек, интегрируемых с драйвером TCP/IP через закрытые интерфейсы. K числу таких сервисов относятся трансляция сетевых адресов (NAT), IP-фильтрация, подключение IP-ловушек (IP-hooking) и IP-безопасность (IPSec). Ha рис. 13–17 показано, как эти расширения связаны с драйвером TCP/IP.
Трансляция сетевых адресов
Трансляция сетевых адресов (network address translation, NAT) представляет собой сервис маршрутизации, позволяющий отображать несколько закрытых IP-адресов на один общий IP-адрес, видимый в Интернете. Без NAT для коммуникационной связи с Интернетом каждому компьютеру в локальной сети (LAN) пришлось бы назначать свой IP-адрес, видимый в Интернете. NAT дает возможность назначить такой IP-адрес только одному из компьютеров в локальной сети и подключать остальные компьютеры к Интернету через него. NAT по мере необходимости транслирует LAN-адреса в общий IР-адрес, перенаправляя пакеты из Интернета на соответствующий компьютер в локальной сети.