Литмир - Электронная Библиотека

Жизнь — это сложная система перекрывающихся химических реакций, в основе которых лежат механизм обратной связи и свободная энергия. Здесь, на Земле, жизнь приобрела особую форму, воспользовавшись изумительной гибкостью химии углерода. Кто может сказать, какие формы могли бы приобрести аналогичные сложные системы? Фред Хойл, возмутитель спокойствия в мире астрономии, любивший скептически высказываться о Большом взрыве и оспаривавший представления о происхождении жизни, который написал фантастический роман «Чёрное облако», где Земле угрожает огромное живое разумное облако, состоящее из межзвёздного газа. Роберт Форвард, ещё один учёный с научно-фантастической жилкой, написавший книгу «Яйцо дракона» о микроскопических живых существах, обитающих на поверхности нейтронной звезды. Возможно, спустя триллион триллионов лет, много после того как угаснет последняя звезда, тёмная галактика будет населена прозрачными существами, парящими в тусклом свете, излучаемом чёрными дырами, и каждый удар их «сердца» будет занимать миллионы лет. Всё эти кажется таким далёким, но нам известны некоторые физические системы, в которых естественным образом развиваются сложные свойства по мере того, как со временем увеличивается энтропия. Не так сложно себе представить, что жизнь могла развиться в неожиданных местах.

* * *

Есть ещё одна знаменитая проблема: возможно, на свете существует не просто Вселенная, а Мультивселенная. Физические параметры, которые кажутся тонко настроенными, — даже, казалось бы, незыблемые константы, в частности масса нейтрона, — могут различаться в разных точках Вселенной. Если это так, то совершенно логично, что мы живём именно в такой части Мультивселенной, где возможна жизнь. Где бы ещё мы могли оказаться?

Иногда такая идея именуется антропным принципом, причём из-за одного упоминания о нём порой вспыхивают жаркие дебаты между сторонниками и противниками этой идеи. Это очень плохо, поскольку базовая концепция очень проста и практически бесспорна. Если мы живём в мире, в разных частях которого условия существенно различаются, то наша картина мира получается весьма избирательной: мы можем очутиться только в той части мира, параметры которой допускают наше существование. Так, например, в Солнечной системе существует ряд планет и некоторые из них гораздо крупнее Земли. Но никому не кажется странным, что мы живём только на Земле, никто не усматривает в этом тонкой настройки. Просто эта планета наиболее благоприятна для жизни. Вот и антропный принцип в действии.

Единственный серьёзный вопрос в данном случае — насколько обоснованно предположение о том, что мы действительно живём в Мультивселенной. Терминология здесь немного запутанная; согласно натурализму, существует всего один мир, но этот «мир» может включать целую Мультивселенную. Поэтому нас интересует космологическая Мультивселенная. Это означает, что в космосе действительно существуют различные области, расположенные очень далеко от нас и вследствие этого недоступные для наблюдения, условия в которых серьёзно отличаются от известных. Эти области мы именуем «другими вселенными», хотя на самом деле они всё равно являются частью естественного мира.

Поскольку с момента Большого взрыва прошло конечное количество лет, а скорость света также конечна (один световой год в год), какие-то области пространства расположены так далеко от нас, что мы просто не можем их увидеть. Вполне возможно, что за нашим горизонтом видимости есть места, где действуют совершенно другие законы физики — своя Базовая теория: иные частицы, иные взаимодействия, иные параметры, даже иное число пространственных измерений. Возможно существование великого множества таких областей, в каждой из которых действуют свои локальные законы физики. Это космологическая Мультивселенная (это иная идея, нежели «многомировая интерпретация» квантовой механики, где все ответвления волновой функции подчиняются одним и тем же законам физики).

Кому-то подобные спекуляции не нравятся, поскольку они основаны на феноменах, которые недоступны для наблюдения и таковыми останутся. Однако, даже если бы мы могли увидеть другие вселенные, их существование никак бы не повлияло на наши представления о наблюдаемой Вселенной. Если Вселенная всего одна, то загадку энергии вакуума можно сформулировать следующим образом: «Почему энергия вакуума имеет именно такое значение, а не другое?». Если вселенных много и в каждой из них значение энергии вакуума отличается, то вопрос формулируется иначе: «Почему мы находимся в той части Мультивселенной, где энергия вакуума приняла данное конкретное значение?». Это довольно разные проблемы, но каждая из них является обоснованным научным вопросом, и решать каждую из них нужно традиционными научными методами. Итак, какая физическая модель наилучшим образом объясняет имеющиеся данные?

Признаться, идея Мультивселенной казалась бы несколько сомнительной, если бы мы теоретизировали обо всех этих различных областях пространства совершенно безосновательно либо только пытаясь решить проблемы, связанные с тонкой настройкой. В таком случае эта модель казалась бы чрезмерно сложной и надуманной. Даже если бы она хорошо согласовывалась с данными, то было бы естественно проверить её самым суровым образом, прежде чем присваивать ей априорную субъективную вероятность; простые теории всегда предпочтительнее сложных.

Однако в современной космологии Мультивселенная — далеко не только теория. Это, скорее, прогноз, построенный на основе других теорий — тех, которые формулировались для совершенно иных целей. Идея Мультивселенной появилась не потому, что люди считали её классной; она родилась благодаря тому, что мы всеми силами стараемся понять наблюдаемую часть Вселенной.

В частности, есть две теории, подводящие нас к размышлениям о Мультивселенной: это теория струн и инфляционная теория. В настоящее время теория струн — наиболее перспективная парадигма, которая, возможно, позволит увязать гравитацию с законами квантовой механики. Естественно, теория струн предполагает, что в пространстве больше измерений, чем мы наблюдаем. Можно подумать, что сам этот факт исключает теорию и мы должны жить дальше, не учитывая её. Но эти дополнительные измерения в пространстве могут быть свернуты в крошечную геометрическую фигуру, слишком миниатюрную, чтобы её удалось наблюдать в каком-либо из поставленных экспериментов. Существует много вариантов такого свёртывания, то есть много разнообразных форм, которые могли бы принимать дополнительные измерения. Точного числа мы не знаем, но, по оценкам физиков, может быть около 10500 таких вариантов.

Любой подобный способ скрытия дополнительных измерений — в теории струн такой способ называется «компактификация» — даёт эффективную теорию с собственными наблюдаемыми законами физики. В теории струн «физические константы», например значение энергии вакуума или массы элементарных частиц, зависят именно от того, каким образом скрытые измерения свёрнуты в данной области Вселенной. Жители другой области пространства, где дополнительные измерения свёрнуты иначе, получили бы совершенно иные значения.

Вселенная - img_47

Различные способы, которыми могут быть компактифицированы и скрыты дополнительные измерения. Каждая возможность даёт иные значения, характеризующие физические законы, которые мы могли бы зафиксировать в этой области пространства

Итак, теория струн допускает существование Мультивселенной. Однако, чтобы описать Мультивселенную как реальную сущность, мы обратимся к инфляционной теории. Эта идея была впервые сформулирована в 1980 году Аланом Гутом в следующем виде: на заре существования юная Вселенная пережила период стремительного расширения, которое подпитывалось своеобразной сверхвысокой энергией вакуума, существовавшей некоторое время. Это во многом помогает объяснить наблюдаемую Вселенную: в таком случае пространство–время должно быть ровным, гладким, но с небольшими флуктуациями плотности, то есть именно такими сгустками, из которых под действием силы тяжести со временем могут сформироваться звёзды и галактики. В настоящее время у нас нет прямых доказательств того, что инфляция действительно происходила, но эта идея столь естественна и полезна, что многие космологи приняли её в качестве основного механизма, объясняющего, как наша Вселенная могла приобрести современное состояние.

76
{"b":"943294","o":1}