Литмир - Электронная Библиотека

Рассел и другие сторонники версии «сначала метаболизм» не считают, что всё могло быть так просто. Они думают, что тяжелее всего выстроить такую сложную цепочку химических реакций, которая могла бы подпитываться окружающей свободной энергией, пользуясь протондвижущей силой, возникающей в ячейках пористых пород в глубоководных источниках. С этого момента, считают они, реакции естественным образом будут потреблять любые окружающие источники свободной энергии, которые удастся найти. В таком случае жизнь может вырваться из пористого камня, обзаведясь мембранами из жирных кислот, а в дальнейшем продолжать биохимическую регуляцию при помощи ферментов, которые в конечном итоге превратятся в РНК.

* * *

Может быть, правдивы оба сценария, а может быть — ни один из них.

Нет никаких причин полагать, что мы не смогли бы выяснить, как возникла жизнь. Ни один серьёзный учёный, исследующий происхождение жизни, пусть даже верующий, не выберет конкретный процесс и не скажет: «Вот этап, для объяснения которого нужно признать наличие нефизической жизненной силы или какое-либо сверхъестественное вмешательство». Существует стойкое убеждение, что для понимания абиогенеза нужно разгадывать загадки в рамках известных законов природы, а не уповать на какую-либо сверхъестественную помощь, выходящую за пределы этих законов.

Такое убеждение связано с невероятной исторической летописью науки. Хотя и остаётся множество вопросов о происхождении жизни, которые наука пока не решила, не меньше и таких, на которые она смогла ответить, причём многие из них считались проблемами, неподвластными чистой науке (вспомните уверенное заявление Иммануила Канта о том, что никогда не родится Ньютон травинки). Как одни виды происходят от других, более древних? Как синтезируются органические молекулы? Как образуются клеточные мембраны? Как сложные цепи реакций могут преодолевать барьеры свободной энергии? Как у молекул РНК развилась способность катализировать биохимические реакции? На эти вопросы мы уже ответили. Можно с очень высокой байесовской субъективной вероятностью утверждать, что эта череда успехов продолжится.

Такая точка зрения встречает сопротивление в определённых кругах, причём не только среди религиозных фундаменталистов. Идея о том, что жизнь может просто произойти от нежизни, далеко не очевидна. Подобное никогда не происходило на наших глазах, независимо от того, что там воображал себе Ян Баптиста ван Гельмонт. Современные организмы обескураживающе сложны и состоят из отдельных компонентов, которые на удивление хорошо взаимодействуют друг с другом. Сложно поверить, что всё это «просто произошло».

Фред Хойл, заслуженный британский астрофизик, известный тем, что упрямо не признавал модель Большого взрыва, пытался количественно описать эти затруднения. Он изучал конфигурацию атомов в такой биологической структуре, как клетка. Затем, позаимствовав такой ход у Людвига Больцмана, сравнивал общее число возможных комбинаций таких атомов с гораздо меньшим числом вариантов, при которых атомы могли бы образовать клетку. Перемножив ряд крошечных чисел, он сделал вывод о том, что вероятность «самосборки» жизни составляет примерно 1 к 1040 000.

Хойл, имевший способность мастерски придумывать запоминающиеся метафоры, проиллюстрировал свою точку зрения знаменитой аналогией:

Вероятность того, что высшие формы жизни могли возникнуть этим путём, можно сравнить с вероятностью того, что торнадо, пронёсшийся по свалке, мог собрать Боинг-747 из находящихся там материалов.

Проблема в том, что хойловская трактовка возникновения жизни «этим путём» не имеет ничего общего с представлениями исследователей абиогенеза об этом процессе. Никто не считает, что первая клетка возникла в результате того, что фиксированный набор атомов многократно перегруппировался, пока наконец не стал напоминать по конфигурации живую клетку. В принципе, Хойл в очередной раз описывает сценарий с больцмановским мозгом: поистине, случайные флуктуации вместе порождают нечто сложное и организованное.

В реальном мире всё иначе. «Маловероятность», присущая низкоэнтропийным конфигурациям, вплетена в устройство Вселенной с самого начала, поскольку на момент Большого взрыва энтропия Вселенной была очень мала. Тот факт, что космос развивается именно из такого исходного состояния, а не проходит через более типичный равновесный ансамбль состояний, привносит в эволюцию Вселенной сильный фактор неслучайности. Возникновение клеток и метаболизма отражает развитие Вселенной в сторону возрастания энтропии, это не маловероятная случайность на фоне равновесия. Подобно язычкам сливок, смешивающихся с кофе, изумительная сложность живых организмов естественным образом следует из существования стрелы времени.

Мы значительно продвинулись в понимании того, что такое жизнь и как она возникла, причём есть все основания полагать, что прогресс не остановится, пока мы не ответим на все вопросы. Впереди нас ждёт работа, связанная с химией, физикой, математикой и биологией, но не с магией.

Глава 33

Самонастройка эволюции

В 1988 году у Ричарда Ленски появилась блестящая идея: он собрался превратить эволюционную биологию в экспериментальную науку.

Эволюция — это идея, служащая мостиком между абиогенезом и великой мистерией жизни, разворачивающейся на Земле сегодня. Вне всяких сомнений, это наука; биологи-эволюционисты формулируют гипотезы, определяют вероятность тех или иных результатов при конкурирующих гипотезах, собирают данные, позволяющие уточнить субъективную вероятность каждой из этих гипотез. Однако у химиков и биологов есть одно преимущество над эволюционистами и, если уж на то пошло, над астрономами: они могут многократно ставить интересующие их эксперименты в лаборатории. Было бы очень сложно спроектировать такой лабораторный эксперимент, который показал бы дарвиновскую эволюцию в действии, как было бы не менее сложно создать новую Вселенную.

Тем не менее нельзя утверждать, что это невозможно (как минимум в случае эволюции; мы всё ещё не умеем создавать вселенные). Именно этим и решил заняться Ленски.

Его исходный проект был — и есть, поскольку эксперимент по-прежнему продолжается, — очень прост. Он взял двенадцать пробирок с питательной средой; это была жидкость с конкретным набором химических соединений, в том числе с дозами сахара в качестве источника энергии. В каждую пробирку он ввёл одинаковые популяции E. coli. Каждый день количество клеток в пробирке возрастает от нескольких миллионов до нескольких сотен миллионов. Один процент выживших бактерий извлекается из пробирки и распределяется по новым пробиркам с такой же питательной средой, как и ранее. От оставшихся бактерий обычно избавляются, хотя время от времени образец замораживается для контроля — так создаётся экспериментальная «палеонтологическая летопись». (В отличие от людей, бактерии легко замораживаются, а позже оживляются — современные технологии это позволяют.) Общий рост популяции составляет примерно шесть с половиной поколений в день; ограничивающим фактором является не время, а объём питательных веществ (между делениями клетки проходит менее часа). По состоянию на конец 2015 года имелось уже более 60 000 поколений бактерий — достаточно, чтобы с ним успели произойти некоторые интересные эволюционные изменения.

Бактерии, заключённые в такую исключительно специфическую и стабильную среду, уже успели довольно хорошо к ней приспособиться. Они стали вдвое крупнее, чем особи из исходной популяции, размножаются гораздо быстрее, чем когда-либо ранее. Они отлично освоили метаболизм глюкозы, но в целом стали хуже себя чувствовать в более разнообразных питательных средах.

Наиболее впечатляет, что с E. coli произошли не только количественные, но и качественные изменения. Среди ингредиентов исходной питательной среды был цитрат, состоящий из атомов углерода, водорода и кислорода. Первые бактерии не могли потреблять это соединение. Но примерно через 31 000 поколений Ленски и его сотрудники заметили, что популяция в одной из пробирок стала расти гораздо быстрее, чем в других. Внимательно её изучив, учёные обнаружили, что некоторые бактерии из этой популяции приспособились перерабатывать не только глюкозу, но и цитрат.

67
{"b":"943294","o":1}