Богданов выдвигает теорию равновесия, согласно которой всё существующее представляет собой сменяющие друг друга состояния подвижного равновесия, устанавливающегося в результате столкновения различно направленных сил. Тектология различает механизм формирующий и механизм регулирующий системы. Основой формирующего механизма является конъюгация, соединение элементов непосредственно или через посредство какого-либо третьего элемента (ингрессия); основой регулирующего механизма является подбор новых состояний системы.
Состояния равновесия сменяются состояниями нарушения равновесия или кризисами, изучение которых составляет задачу организационной диалектики. Основываясь на этих положениях, Богданов рассматривает несколько схем развития, которые, нося универсальный характер, могут быть применены к различным природным и общественным процессам. Так, в частности, он полемизирует с К. Марксом и В. И. Лениным, считая, что разделение общества на классы происходит в зависимости не от владения средствами производства, а от владения организационным опытом. Классы возникают в результате выделения в родовой общине патриарха-организатора; господствующим классом является класс организаторов производства; путь же к уничтожению классов лежит не через завоевание власти, а через усвоение организационного опыта всеми представителями общества, т. е. прежде всего благодаря эффективной образовательной системе.
Разумеется, в 1917-м и последующих годах такая точка зрения не встречала понимания в Советской России. Близко знавший Богданова В. И. Ленин неоднократно и резко критиковал его научные взгляды, хотя, по-видимому, относился к нему с уважением благодаря высоким нравственным качествам А. Богданова и его несомненным таланту и отваге. Тем не менее, несмотря на множество оригинальных и, безусловно, интересных идей, во многом предвосхитивших будущие принципы системологии и кибернетики (принцип обратной связи), учение А. Богданова оказалось преданным забвению у себя на родине, оставаясь практически неизвестным для западных исследователей. Лишь в последние годы, благодаря деятельности его сына, известного специалиста в области теории системного анализа А. А. Малиновского, труды А. Богданова получают свое второе рождение.
Иную судьбу имела созданная несколькими десятилетиями позднее, но весьма близкая по духу тектологии «общая теория систем», ставшая новой междисциплинарной областью науки, изучающей поведение и взаимодействие различных систем в природе и обществе. Основные положения этой теории были сформулированы ее автором, Людвигом фон Берталанфи[13], накануне Второй мировой войны. Кратко они утверждали следующее: «Существуют модели, принципы и законы, которые применимы к обобщенным системам, или к подклассам систем, безотносительно к их конкретному виду, природе составляющих элементов и отношениям, или силам, между ними… Общая теория систем представляет собой логико-математическую область исследований, задачей которой является формирование и выведение общих принципов, применяемых к системам вообще. Осуществляемая в рамках этой теории точная формулировка таких понятий, как целостность и сумма, дифференциация, централизация, иерархическое строение, финальность и эквифинальность, позволяет сделать эти понятия применимыми во всех дисциплинах, имеющих дело с системами, и установить их логическую гомологию» [2].
В середине XX века Берталанфи предлагает математическое описание системных параметров (целостность, эквифинальность и др.), с помощью одновременных дифференциальных уравнений. Эти уравнения он называет динамическими или уравнениями движения, полагая, что их совокупность дает полное описание поведения любой системы.
Берталанфи особенно отмечает тот факт, что системные законы проявляются в виде аналогий или «логических гомологий», законов, представляющихся формально идентичными, но относящимися к совершенно различным явлениям или дисциплинам. Занимаясь биологической проблематикой, Берталанфи иллюстрирует эти положения примерами, взятыми из биологии, типа аналогии между центральной нервной системой и сетью биохимических клеточных регуляторов. Очевидно, что подобным примером служит и приведенная ранее аналогия между психофизическими и термодинамическими закономерностями. Не менее важным аспектом теории систем является решение проблемы устойчивости, т. е. реакции системы на деформацию. Для решения этой проблемы Берталанфи также предложил математический метод, опирающийся на анализ описывающих систему дифференциальных уравнений.
В шестидесятые годы область интересов Берталанфи смещается в сторону «системной философии», которую он понимает как «новую философию природы», заключающуюся в организмическом взгляде на мир как на «большую организацию» и представляющую новую парадигму науки. В 1950-1960-е годы поток системной литературы многократно возрастает. Наряду с публикацией новых работ Берталанфи и близких к нему по духу работ Акоффа, Эшби и др. развивается так называемое системотехническое направление, целью которого является практическое применение принципов системного анализа при организации сложных объектов, типа городской транспортной структуры или животноводческой фермы.
Тенденция к созданию метанаучных системных концепций проявляет себя не только в развитии новых дисциплин, но и во вновь обостряющемся внимании к концептуальным проблемам физики макропроцессов и термодинамике. Примером этого является концепция А. И. Вейника, главный постулат которой – существование пяти основных законов (состояния, диссиципации и др.), описывающих общие закономерности природы, вне зависимости от уровня системного анализа – механического, биологического или социального. Используя понятия обобщенного потенциала системы и ее энергетического заряда, А. И. Вейник предложил ряд формальных закономерностей (систему дифференциальных уравнений состояния системы), дающих описание любой макросистемы [4]. Элементарные законы статики и динамики макросистем различного уровня (законы Ома, Фурье, Джоуля – Ленца и др.) при этом оказываются частными случаями обобщенных закономерностей. Теория А. И. Вейника была предложена в середине 1960-х годов и с тех пор не раз становилась объектом критики ввиду присутствия в ней ряда не вполне обоснованных выводов (например, о роли понятия «энтропия» для развития термодинамики). Вместе с тем некоторые из содержащихся в ней положений вполне могут заинтересовать исследователя, работающего далеко за пределами физической теории.
В семидесятые годы системный подход воспринимается уже как магистральное направление науки, а системное движение выдвигает требование интегрировать всю совокупность знаний о системах в единую науку – «системологию». Продолжая путь, начатый Берталанфи, системология в начальный период развития уделяет много внимания совершенствованию своей методологии и категориального аппарата, чему во многом способствуют труды советских философов – М. И. Сетрова, В. Н. Садовского, А. И. Юдина и др. [17]. В результате их деятельности к середине семидесятых годов системология складывается как общефилософская дисциплина, постепенно принимающая на себя ту роль, которую до середины XIX века играла рационалистическая философия.
Во второй половине 1970-х годов круг системологических исследований расширяется на всю область естественных наук и охватывает практически все явления природы, от уровня простейших организмов до Вселенной. Одновременно продолжает совершенствоваться математический аппарат системных исследований и моделей поведения сложных экологических и биологических систем, что хорошо видно на примере опубликованных в эти годы работ Б. С. Флейшмана «Основы системологии» [18], В. Г. Дружинина и Д. С. Конторова «Проблемы системологии» [11], содержащих развернутое описание понятийного аппарата и аксиоматики системологии.
Завершением этого процесса становится развитие синергетики – обобщающей науки, представляющей проекцию системологических взглядов на область неравновесных и необратимых процессов (к которым относится подавляющее большинство природных процессов). Синергетика (от греч. «совместное действие») как междисциплинарное научное направление, изучающее закономерности процессов самоорганизации в сложных системах, сложилось к середине 1970-х годов благодаря деятельности выдающегося физика конца XX века Германа Хакена[14] и Нобелевского лауреата Ильи Пригожина. Синергетика представляет мир как подвижную неравновесную систему, гармонически сочетающую случайные и стабильные структуры, связанные сложной сетью положительных и отрицательных обратных связей. Г. Хакен выделяет три общих черты всех сложных систем, изучаемых синергетикой. Во-первых, они являются открытыми, т. е. обмениваются с окружающей средой веществом или энергией. Во-вторых, они подвержены внутренним и внешним колебаниям и способны в процессе собственной эволюции утрачивать устойчивость и становиться нестабильными, претерпевая качественные изменения. В-третьих, в ходе эволюции они приобретают новые свойства и в них самопроизвольно возникают пространственные и функциональные структуры, как упорядоченные, так и неупорядоченные [19].