Литмир - Электронная Библиотека
A
A

1.Тело нейрона (сома) – получает информацию. Содержит ядро клетки.

2. Дендриты – короткие отростки, принимающие информацию от других нейронов.

3. Аксон – длинный отросток, несет информацию от тела нейрона в другие клетки.

Чаще всего аксон оканчивается контактом (синапсом) с дендритами других нейронов.

Дендриты и аксоны также называют нервными волокнами. Аксоны бывают очень разными по длине – от нескольких миллиметров до метра и даже более.

Что же делает нейрон? Нейрон, получая через дендриты сигналы от других клеток, накапливает в себе ионы. Ионы – это небольшие частицы размером с атом, имеющие положительный или отрицательный электрический заряд. В состоянии покоя электрический заряд внутри нейрона отрицательный, а в окружающей его межклеточной жидкости – положительный. А если где-то близко образуются два полюса «+» и «—» (опять физика, будь она неладна!), то между ними стремится возникнуть электрический ток. Заряд накапливается до тех пор, пока он не превысит определенный порог. После этого нейрон посылает по аксону электрический импульс – потенциал действия.

После того как тело нейрона накопило достаточно заряда и он «выстрелил» по аксону электрическим импульсом, наступает кратковременное состояние отдыха (гиперполяризация), в этот момент передача импульса невозможна.

Потенциал действия чаще всего генерируют ионы калия (К+) и натрия (Na+) (а это уже химия!), которые по ионным каналам перемещаются из межклеточной жидкости внутрь клетки и обратно, меняя заряд нейрона и делая его сначала положительным, а затем снижая его.

Потенциал действия обеспечивает работу нервной клетки по принципу «все или ничего», то есть импульс или передается, или нет. Сигналы, которые передают нашему нейрону другие нейроны, будут накапливаться в теле клетки до тех пор, пока их заряда не будет достаточно для передачи по нервным волокнам.

Ничего не напоминает? Некое устройство, способное передавать заряд от «плюса» к «минусу» в момент, когда оно получило на это управляющий сигнал? Верно! Это, по сути, все тот же транзистор с его тремя контактами!

Если наложить схему работы транзистора на устройство нейрона, то можно представить все это примерно так:

Бунт марионеток. Руководство по контрэволюционной психологии - _4.jpg

Согласен, с виду не слишком то похоже на транзистор. Да и механизм получения управляющего сигнала и передачи заряда другой: химический, а не электрический. Про химический компонент работы нейронов мы поговорим во второй главе, когда коснемся темы эмоций (Спокойно! Химии там будет не больше, чем физике в этой главе!), а сейчас важно понять главное: все мыслительные процессы человека основаны ни на чем ином, как на работе огромного количества взаимно связанных биологических транзисторов.

Именно так: каждое действие, которое осуществляет тело человека, обеспечивается работой нейронов. Разветвленная синаптическая сеть формирует личность и сознание. Нейроны отвечают как за самые примитивные рефлексы, так и за самые деликатные процессы, связанные с мышлением.

Задача нервной системы – собрать сигналы, поступающие из окружающей среды или из организма, «оценить» ситуацию, «принять» решение, как на них отреагировать (Официант, еще одну «Маргариту» за третий стол!), а также «подумать» о происходящем и «запомнить» это. Основной инструмент для выполнения этих задач – биотранзисторы, сплетенные по всему организму с ослепительной точностью.

По средним оценкам, количество нейронов в головном мозге составляет примерно 90 миллиардов, каждый из них связан в среднем еще с 5–10 тысячами близких и дальних сородичей, образуя суммарно около 100 триллионов связей (синапсов). Ученые говорят, что люди просто не приспособлены для восприятия таких больших чисел. Для большинства из нас представить, как выглядит миллион чего угодно, является невыполнимой задачей. Зато наш сложный мозг любит простые сравнения по принципу «больше-меньше».

Так вот, если мы попробуем прикинуть количество возможных сочетаний этих триллионов синапсов, то получившееся число будет больше количества атомов в нашей вселенной. Это и создает невероятную сеть взаимодействия, во многом более изощренную, чем самые совершенные компьютеры.

Именно эта неисчислимая вариативность нейронных связей и порождает иллюзию присутствия у нас неких дополнительных и отделенных от мозга «высших» структур: души, «нематериальных» мыслей или особого «квантового» сознания.

Распространённая и легко объяснимая когнитивная ошибка. Рассматривая непонятное явление неизвестной для нас природы, мы всегда пытаемся объяснить его привычными аналогиями и устойчивыми шаблонами. Попробуйте показать оторванному от цивилизации индейцу племени Кавахива ваш смартфон! Он непременно решит, что в магическом «камне» живут своенравные духи, которые откликаются на ритуальные пассы и заклинания.

То же и с мозгом. Запредельную сложность конечной системы намного проще объяснить влиянием высших сил, чем вдуматься в главный принцип ее работы. А принцип не такой уж и хитрый: как только поймем способ взаимодействия нейронов, вся логика устройства мозга станет понятна тоже, ведь ничего другого, никакой «души» там нет и быть не может.

Примерно это и имел в виду Ницше, когда в присущей ему язвительной манере писал:

«″Чистый дух″ – чистая глупость: если вычесть нервную систему, чувства, наконец, ″смертную оболочку″, мы просчитаемся – просчитаемся, да и только!»

Спору нет, и самих нейронов в мозгу и связей между ними столько, что рассчитать и смоделировать их взаимодействие в полном объеме – задача ну просто уж совсем неподъемная. Но нам ведь это и не нужно, главное – твердо усвоить, что все многообразие психики основано на совместной работе множества простых типовых элементов.

Тот самый компьютерный двоичный код, который мы упоминали выше, годится и для составления когнитивных схем: «есть сигнал» – «нет сигнала», «ноль» или «единица».

Интригующее исследование санкт-петербургских ученых Анны Букинич и Петра Шабанова убедительно показывает, что хотя выработка импульса нейроном и подчиняется биологическим процессам, но, по сути, сводится к передаче сигнала в системе двоичного кода [1]. Выходит, что как ни крути двоичный код является основой деятельности центральной нервной системы, а значит, и взаимосвязь нейронов между собой целесообразно описывать в терминах бинарной логики.

Есть двоичный код – значит может быть составлена программа, описывающая процесс анализа данных и выбора действия, и подобные программы уже составлены для описания поведения простых организмов. Человек намного сложнее, но сложнее количественно, а не качественно, и отдельные алгоритмы принятия решения человеком уже описываются в терминах программирования.

Дело дошло даже до нейрокибернетического моделирования самых глубинных процессов, протекающих в мозгу человека, то есть речь идет даже не об анализе осознанного на вербальном уровне мышления, а о моделировании подсознания, на котором основана творческая деятельность.

Еще с середины прошлого века ведутся исследования, по созданию нейронных сетей, в которых констелляция клеток ассоциируется с абстрактным понятием. Оно, в свою очередь, может впоследствии поддаваться вербализации [2].

И вот что крайне важно: новые программы (суть алгоритмы связи и обмена сигналами между транзисторами микросхем) могут подгружаться в процессор не только извне, но и изнутри. Компьютер постоянно «анализирует» важные параметры собственных устройств: температуру процессора, ресурсы памяти. Результаты также могут влиять на работу других программ; кто из нас не сыпал проклятиями на сообщения о нехватке места на диске при копировании файла!

Примерно такая же «загрузка» новых программ непрерывно происходит и с нашим мозгом: мы что-то увидели, услышали, прочитали, о чем-то подумали или почувствовали некие ощущения в теле – все это переструктурирует связи между нейронами. Формируются дополнительные контакты, и теперь новые конфигурации биотранзисторов будут отправлять другие пакеты сигналов по синаптическим контурам. Наш мозг в буквальном смысле постоянно меняется: вот вы сейчас прочитали несколько предложений из этого текста, и конфигурация уже стала чуточку иной, появились новые цепочки связей. И очень может быть, что какое-либо следующее решение вы теперь примете не так, как могли бы, не получи вы эту информацию сейчас.

4
{"b":"911433","o":1}