Литмир - Электронная Библиотека
Содержание  
A
A

Высота главной опоры моста Хэчжан на скоростной автомагистрали Бицзе – Вэйнин в пр. Гуйчжоу составляет 195 м и является самой высокой мостовой опорой сплошных рамных мостов в мире. В конструкции данного моста использованы однокорпусные трехкамерные одинарные опоры с переменным поперечным сечением, в конструкции левой и правой основных балок используется одна совместная промежуточная мостовая опора. По сравнению с двойными тонкостенными опорами или комбинированными промежуточными мостовыми опорами данная конструкция не только увеличивает устойчивость промежуточных мостовых опор, но и экономит строительные затраты. В связи с требованиями по сейсмостойкости промежуточных мостовых опор на мосту Лабацзинь на участке скоростной автодороги Яань-Сичан в пр. Сычуань скоростной автодороги Б5 (Пекин – Куньмин) были использованы бетонные опоры со стальными трубами. На мосту Хутяохэ скоростной автодороги Чжэньнин – Шэнцзингуань скоростной автомагистрали Б60 (Шанхай – Куньмин), на мосту Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу использованы комбинированные промежуточные мостовые опоры. Китайские ученые провели теоретические исследования, касающиеся вопроса прочности мостовых опор, были выведены теоретические формулы расчета прочности в плоскости и вне плоскости комбинированных промежуточных мостовых опор и одинарных опор с переменным поперечным сечением, тем самым усовершенствовав теорию проектирования опор. Обрывистый рельеф и неблагоприятные геологические условия ущелья влияют на выбор типа моста, планировку пролета моста и соотношения боковых и средних пролетов. В случае размещения площадок строительства моста при переходе через ущелья с большой шириной , большой глубиной , с большими перепадами в рельефе местности по обеим сторонам ущелья, когда условия места не соответствуют либо не подходят для устройства пилонов, в основном используются подвесные мосты с односкатными (однопроходными) пролетами через ущелья, а на подвесных мостах через водные преграды из-за ровного рельефа местности чаще всего используется трехпролетная конструктивная схема с двумя пилонами либо многопролетная схема с несколькими пилонами. При проектировании подвесных мостов через ущелья обычно выбираются туннельные анкеры для уменьшения объема горных выработок и объема бетона. В некоторых случаях расположения моста допускается использовать условия рельефа местности, чтобы не строить главный пилон с одной стороны, в таком случае выполняется закрепление основного тягово-буксирного троса непосредственно в гору, как в сооружении моста через р. Цзиньша в ущелье Хутяохэ в пр. Юньнань, данный мост представляет собой однопролетный подвесной мост с пилоном со стальными фермами с высотой основного пролета 766 м. На берегу р. Лицзян установлен основной пилон и гравитационный анкер оттяжки, на берегу со стороны уезда Шангри-Ла не был использован вариант строительства основного пилона, а были установлены туннельные анкеры.

Такая же конструкция была применена при строительстве моста Тунмай , построенного на скоростной автодороге 318 Сычуань-Тибетского шоссе. В зависимости от условий рельефа местности, во избежание слишком большой высоты мостового пилона, при сооружении вантовых мостов обычно приходится выбирать сооружение большого среднего пролета и относительно небольших крайних береговых мостовых пролетов, поэтому соотношение средних пролетов и малых крайних мостовых пролетов придают мостам, прокладываемым через ущелья, особую форму вертикального расположения пилонов. В целях уравновешивания неравномерного веса балок со средними и крайними мостовыми пролетами, обычно используется сооружение вантового моста комбинированного типа со средними пролетами, построенными из стальных балок либо связующих балок, и крайними мостовыми пролетами из железобетонных балок. Как например, мост через р. Ячихэ в пр. Гуйчжоу представляет собой вантовый мост с двумя пилонами и с двойными плоскостными железобетонными балками, на крайних и средних мостовых пролетах использованы коробчатые балки из предварительно напряженного бетона и стальные фермы, соотношение крайних и средних пролетов составляет 0,275, схема пролетов 72 + 72 + 76 + 800 + 76 + 72 + 72 м. Чтобы приспособиться к условиям рельефа местности ущелья и уменьшить объем выемки выработки на откосах, в целях обеспечения соответствия требованиям охраны окружающей среды очень часто используется конструктивное выполнение моста с вертикальными и горизонтальными пилонами и асимметричным фундаментом. Высота ребра одной и той же опоры (пилона), размещенной на поперечном мосте, который упирается в крутой склон не может быть одинаковой , поэтому по степени жесткости два ребра опоры (пилона) будут несимметричны. Из-за большой разницы по глубине залегания свайных фундаментов несущей плиты пилона, размещенных на поперечном мосте, который упирается в крутой склон, часть свайного фундамента может быть обнажена, образуя специфический возвышенный свайный ростверк на мосту, например, как на мосту в горах Улиншань рядом с г. Чунцин на скоростной автодороге G65 (Баотоу – Маомин).

Вопрос прочности горных откосов всегда стоит на первом месте. Конструкция опор моста и фундамента моста напрямую связаны с прочностью основания моста на горных откосах и с безопасностью мостовой балки в целом. Если промежуточная мостовая опора моста, прокладываемого через ущелье, строится на откосах горной вершины либо горного хребта, сторона, прилегающая к дну ущелья, зачастую имеет высокую свободную поверхность. Устойчивость горного откоса может стать определяющим контрольным фактором выбора конструкции моста, прокладываемого через ущелье. В процессе проектирования фундамент и массив пород горных откосов примыкающих территорий часто рассматриваются вместе при выполнении оценки несущей способности и степени устойчивости, однако выполнять оценку устойчивости горных откосов очень сложно, учитывая сложный механизм деформации и разрушения горных откосов, как правило, в таких случаях не применяется распространенный метод расчета проверки прочности по «несущей способности» упругого полупространства. По этой причине госорганы пр. Гуйчжоу издали специальные правила, касающиеся выполнения проектных расчетов с учетом местных геологических особенностей . В настоящих правилах установлены требования разработки отчета по оценке устойчивости горных откосов на стадии предварительного проектирования, и только после прохождения проверки и положительной оценки отчета допускается последующее проектирование и строительство. По результатам проведенных исследований , на многих проектах строительства мостов через ущелья на территории Китая вносились изменения в выборе местоположения места, вносились изменения в технический проект конструкции типа моста и пролета моста из-за проблем с устойчивостью горных откосов. Например, мост через реку Димухэ скоростной автодороги 656 (Ханчжоу – Жуйли) в пр. Гуйчжоу (подвесной мост с пролетным строением со сквозными стальными фермами), в соответствии с топографическими условиями местности, на данном мосту не требовалось строительство пролета длиной 538 м, однако из-за проблем с устойчивостью берегового откоса, а также чтобы обеспечить безопасность моста, длина пролета была в итоге скорректирована до 538 м. Из-за проблемы с устойчивостью береговых откосов при строительстве моста через реку Лишуй в пр. Хунань пришлось внести изменения в маршрут прокладки скоростной дороги, таким образом, выбор маршрута и укладка трассы автодороги может изменяться из-за условий местоположения мостов, прокладываемых через ущелья.

Неблагоприятные геологические условия в районах ущелий , такие как наличие карстовых пород, частые оползни, наличие зон разломов, частые обвалы, селевые потоки и др. приводят к тому, что от некоторых проектов строительства мостов с хорошими экономическими показателями приходится отказываться из-за плохих геологических условий , что в свою очередь влечет за собой увеличение масштабов строительства. В процессе изучения вариантов проекта моста через реку Чжицзинхэ скоростной автодороги 650 Шанхай – Чунцин (ранее западная часть скоростной автодороги Шанхай – Чэнду) в пр. Хубэй , учитывая топографические особенности местности, был рекомендован вариант подвесного моста со стальными фермами без пилонов, в данном проекте были использованы топографические особенности местности и рекомендовано строительство поворотной конструкции пролета (седла) с натяжными фермами, промежуточные опоры не устанавливались, проект обладал хорошими экономическими показателями и с относительно хорошими условиями для проведения строительных работ. Однако из-за отсутствия геологических условий для установки крупногабаритных туннельных анкеров и крупномасштабных гравитационных анкеров, в итоге был выбран вариант строительства арочного моста из сталежелезобетонной конструкции 430 м. Из-за развития карстовых пород на закарстованных участках в процессе выполнения проектных изысканий возникают сложности из-за ограниченной возможности бурения большего количества скважин и расположенности точек бурения, в таком случае иногда бывает трудно достоверно выявить геологические условия в местах строительства мостовых опор, что в дальнейшем может привести к внесению изменений в проект конструкции во время строительства и порой даже к изменениям планировки пролета моста. При строительстве свайного фундамента для промежуточной мостовой опоры моста Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу была обнаружена карстовая пещера с 5 слоями. Поскольку объем карстовых пещер достигал 200 000 куб. м, стоимость засыпки каверзностей была слишком высокой , поэтому конструкцию пришлось изменить, и в итоге была утверждена конструкция мостового пролета, которая состояла из 5 * 30 м Т-образной балки из предварительно напряженного бетона + 82,5 + 220 + 290 + 220 + 82,5 м непрерывной жесткой рамы с наклонной мостовой опорой из предварительно напряженного бетона + 4 х 30 м балки из предварительно напряженного бетона.

3
{"b":"907694","o":1}