(3) Для армирования тюбинга применяют метод сеточного армирования, лицевые и каркасные стойки крепятся вместе, образуя сетку арматуры, обычно арматура монтируется в области болтовых отверстий. В КНР продольную арматуру гнут и приваривают стыковым швом к каркасным стойкам, так образуется арматурный каркас. В верхней части есть болтовые отверстия, болт крепится и соединяется с торцевой поверхностью симметрично распределенного каркаса арматуры. Некоторые тюбинги снабжаются кольцевой арматурой для увеличения сопротивляемости стыков.
(4) Продольная арматура тюбингов – Т14, среднее расстояние между элементами – 150 мм. В КНР применяется продольная арматура диаметром от 16 мм и выше, среднее расстояние между элементами равно 125 мм.
(5) Распределительный арматурный стержень тюбинга равен Т10, среднее расстояние между стержнями – 160 мм. В КНР распределительный арматурный стержень тюбинга равен 12 – 14 мм, среднее расстояние между стержнями – 160 мм.
3) Анализ причин различий
(1) Во время строительства каждой ветки метро в КНР участок строительных работ делится на 3 – 5 отрезков, так удобнее распределять тюбинги между строительными организациями. Обычно, принимая во внимание геологические условия каждой метротрассы и глубины залегания, предоставляются 1 – 4 вида универсальных карт распределения арматуры. Проектные подразделения каждого участка проводят повторные вычисления, исходя из конкретного состояния своего отрезка, и из универсальных чертежей выбирают различное распределение арматуры. Принимается во внимание инклюзивность, часто используемый тип армирования превышает потребности участка.
(2) При внутренних расчетах армирования элементов строительства проходческих пространств метро в КНР обычно прибегают к привычному методу, применяемому в Японии (нагрузка – структурная модель). На красной ветке в городе Тель-Авив применяется метод структуры пласта (скалистый грунт – структурная модель). Первый метод уменьшает твердость соединения тюбингов и увеличивает средний изгибающий момент. Второй метод не учитывает влияние на соединение, а исходит из гомогенности грунтов. С точки зрения расчетного усилия первый способ превосходит второй.
(3) В КНР проектанты, применяя японский метод, проводят анализ внутренних сил. Затем для проведения расчетов несущей способности, объем армирования часто уменьшается соответственно параметру проектных продольных сил, или стандартные параметры продольной силы заменяют проектные. Вплоть до того, что иногда проводятся расчеты плоских изгибов конструкции, что приводит к увеличению объемов арматуры. Однако в туннелях подобной кольцевой структуры продольная сила оказывает сильное итоговое влияние на арматуру. Если не определен такой параметр, как качество почвы, или сложно определить количество интервалов вследствие их чрезмерности, то для вышеизложенного метода проводится расчет количества арматуры.
(4) Строительный цикл сооружения проектов метро в КНР сравнительно короткий, а время геологоразведочных работ еще короче: время исследования одной метротрассы не превышает года. В Тель-Авиве все работы, связанные с геологическими исследованиями и подведением результатов, заняли более 5 лет. Отбросив время на согласование, получим не менее 3 лет, ушедших на сбор данных на месте и исследовательскую деятельность. В КНР инженерные исследования завершают в сжатые сроки, при этом удовлетворяются требования существующих стандартов. Количество образцов внутренних и полевых испытаний в КНР меньше, чем за рубежом. В то же самое время, технический персонал, производящий исследования, испытывает беспокойство по поводу изменчивости подземного инженерного геологического строения. Предоставляемые параметры почвы устаревают, что приводит к отклонениям в сторону в результатах расчета внутренних сил конструкции.
(5) До 2010 года при сооружении строительных проектов метро в КНР использовалась несущая арматура HRB335, проектная прочность которой была низкой. Предел ее текучести по европейским стандартам составляет 400 – 600 MПa. В тождественном по внутренним силам проекте, в КНР используют большее количество стали. С течением экономического и технического развития и прогресса в КНР, свойства арматуры улучшились. В настоящее время по большей части используют несущую арматуру HRB400, с соответствующим пределом текучести – 400 MПa. Не смотря на улучшение технических характеристик арматуры, из-за многолетнего проектирования по инерции, некоторые участки с арматурой в регионах остались без изменений, диаметр арматуры все еще начинается с 16 мм. Данный факт приводит к тому, что в настоящий момент в некоторых районах существующий объем арматуры не уменьшился с улучшением свойств материала. За последние два года в целом ряде проектных организаций обнаружились проблемы. В только построенных тюбингах проходческих пространств, содержание стали снизилось. Например, в Чуньцине, Даляне, Шэньяне и других городах, содержание стальных конструкций уменьшилось до 120 – 135 кг/м3.
4.2. ВОДОНЕПРОНИЦАЕМАЯ КОНСТРУКЦИЯ СВАРНЫХ ШВОВ ТЮБИНГА
В туннелях проходческого типа применяют болтовые соединения, содержится огромное количество стыковых подземных конструкций, вследствие обделки тюбинга и погрешностей монтажа, в торцевой поверхности соединений возникают неровности, что приводит к прерывистости конструкции. В то же самое время смешение пластов приводит к структурной деформации тюбинга туннеля. Накопленные ранее погрешности и деформации приводят к расхождению швов тюбинга, вследствие целого ряда причин швы теряют свои водоизоляционные свойства. В настоящее время невозможно построить полностью водозащищенный туннель.
В настоящее время основными способами гидроизоляции являются: герметичное цементирование тюбинга снаружи, герметичный бетонный тюбинг, водонепроницаемые швы, вторичная герметичная обделка. Все четыре составляющих важны, но, не включая герметичный бетонный тюбинг, самым ключевым пунктом являются герметичные швы тюбинга. Герметичные швы тюбинга достигаются с помощью герметичной уплотнительной прокладки между тюбингами, герметичной подкладки. С внутренней стороны соседнего тюбинга выполняют зачеканенный герметичный шов и крепление болтами, герметизирование монтажного проема. Надежность обеспечивает герметичная уплотнительная прокладка, которая является основой непроницаемости шва. Принцип непроницаемости прокладки заключается в том, что нормальное напряжение контактной поверхности прокладки больше чем давление внутренних вод, оказываемое на тюбинг, и радиальное напряжение в области продольного шва. В проектирование важно количество прокладок на туннель, их форма, размер и материал.

Рис. 4-10. Уплотнительные герметичные прокладки: a) уплотнительная прокладка; b) уплотнительная прокладка СКЭПТ и расширяющаяся при контакте с водой прокладка; c) подходящая по материалу прокладка сечения; d) расширяющаяся при контакте с водой уплотнительная прокладка
4.2.1. Выбор количества уплотнительных прокладок
Согласно исследованиям для обеспечения герметичности швов в подавляющем большинстве случаев используют уплотнительные прокладки в КНР и за рубежом. В туннелях среднего и малого диаметра применяются одиночные прокладки или расширяющиеся при контакте с водой уплотнительные прокладки. В КНР большая часть туннельных пространств имеет большой радиус, в таких туннелях применяются герметичные прокладки или прокладки, валик которой при контакте с водой расширяется. Например, подводный туннель в Токийском заливе (внешний диаметр 13.9 м), Эрресунский мост (внешний диаметр 8.5 м), Шанхайский туннель через Янцзы (внешний диаметр 15 м), мост через залив Ханчжоувань (внешний диаметр 11.3 м), туннель в городе Чанша (внешний диаметр 11.3 м).
Существуют примеры применения двойных прокладок, которые в одинаковой степени проявляются в КНР и зарубежом. Например, Уханьский туннель Чанцзян (внешний диаметр 11 м), туннель Шицзян между Шэньчжэнем и Гонконгом (внешний диаметр 10.8 м), туннель Нанкин Динхуаймень через реку Янцзы (внешний диаметр 14.5 м), старый туннель под Эльбой в Гамбурге (внешний диаметр 13.75 м) и другие. Расположение уплотнительных прокладок в данных туннелях показано на рис. 4-11.