Таблица 2-1. Применимость метода щитовой проходки для геологических условий и условий окружающей среды
Щиты больших диаметров также могут применяться для строительства подземных станций метро. Щитопроходный метод хорошо подходит для строительства трехсводчатых станций метро. Так, в Москве с помощью щита диаметром 9 ~ 10 м были построены три параллельных станционных туннеля и проходы между центральным и боковыми туннелями, формирующие трехсводчатую станцию (рис. 2-5). В Японии с помощью щита построили две параллельные туннельные линии станций метро и проходы между ними, формируя биноклеобразную форму станций.
Рис. 2-5. Трехсводчатая станция метро щитопроходным методом
Применение щитового метода в водонасыщенных мягких слоях для строительства станций метро является более затратным по сравнению с методом строительства сплошных стен, поэтому в данных случаях щитопроходная технология применяется только в случае отсутствия возможности рытья котлована на поверхности земли. При этом, в благоприятных геологических условиях, таких как московская кембрийская глинистая почва и т. п., щитопроходный метод при строительстве глубоко пролегающих станций метро будет иметь преимущество.
3) Область применения щитов среднего диаметра
Щиты среднего диаметра 6.25 ~ 7 м применяются для строительства межзонных туннельных переходов подземных железнодорожных путей.
4) Область применения щитов малого диаметра
Щиты малого диаметра около 3 м используются в строительстве комплексных трубопроводов для отвода воды, канализации, прокладки кабелей, линий связи и других коммунальных сооружений. Так, для строительства газопровода «Запад-Восток», проходящего через реку Янцзы в районе Ченлинцзи, была применена щитопроходная установка с гидропригрузом диаметром 3.24 м.
2.2. РАЗВИТИЕ МЕТОДА ЩИТОВОЙ ПРОХОДКИ В КИТАЕ И ЗА ЕГО ПРЕДЕЛАМИ
В конце XVIII века британцы предложили идею строительства туннеля, пересекающего реку Темзу под Лондоном, и устроили обсуждение конкретных методов проведения раскопок, использования техники и т. д. В 1798 году была предпринята попытка воплощения этой идеи, но, вследствие того, что не удалось вырыть котлован на определенную глубину, план потерпел неудачу. Однако идея построить туннель через Темзу крепла день ото дня. Четыре года спустя Тревитик (Torevix) решил построить туннель, соединяющий две стороны пролива в другом месте, и развернул строительные работы. Однако работы не увенчались успехом: когда оставалось прокопать последние 30 м, забой стремительно заполнился водой, и туннель был затоплен, – идея туннеля под Темзой снова провалилась. Проектные работы продолжались пять лет с момента начала и до их вынужденного прекращения. За 10 лет после рождения плана пересечь Темзу существенного прогресса достигнуто не было.
В 1818 году Марк Брюнель увидел, как корабельные черви разъедают днище деревянного корабля, образуя отверстия, и на него снизошло озарение. Основываясь на этом, он выдвинул метод щитовой проходки и получил на него патент. Так появился прототип так называемого щита «открытого типа» с ручным способом копания. Брюнель был уверен в своем методе строительства и в 1823 году представил план еще одного туннеля между обоими берегами Темзы в Лондоне. Впоследствии этот план был утвержден Конгрессом, и в 1825 году проект стартовал. Общая протяженность туннеля составляла почти 458 м, а ширина туннеля – 11.4 м × 6.8 м. На начальном этапе проект продвигался гладко; 12 января 1828 года произошло первое затопление и остановка работ, тогда один из директоров компании лондонского метрополитена (Callodam ) выдвинул Брюнелю предложение использовать сжатый воздух в строительстве, однако оно не получило одобрения Брюнеля.
После вынужденной остановки проекта Брюнель не потерял надежду; он учел уроки поражений и в течение 7 лет продолжал совершенствовать конструкцию щита. В 1834 году работы возобновились, и в 1841 году шахта туннеля достигла другого берега, а в 1843-м работы были окончательно завершены, и туннель был сдан в эксплуатацию. В ходе работ Брюнель использовал прямоугольную чугунную каркасную конструкцию щита. С того момента, как Брюнель принял вызов, и до полного завершения проекта прошло более 20 лет. После многих лет упорной работы Брюнель преодолел многочисленные трудности и наконец одержал окончательную победу. На тот момент он уже был 72-летним стариком. Вклад Брюнеля в создание метода щитовой проходки оказался огромным, в этом единодушны все последующие поколения.
2.2.1. Развитие метода щитовой проходки в мире
С момента создания прямоугольного щита Брюнелем прошло еще 23 года усовершенствований, и в 1869 году был построен второй туннель под Темзой. Впервые использовалась круглая форма сечения, диаметр туннеля составил 2.18 м, а длина 402 м. Руководили этим проектом двое ученых – Барлоу и Грейтхед. Грейтхед применил новые разработки круглого щита с использованием чугунных веерообразных сегментов, и проходческие работы были успешно завершены без каких-либо происшествий. Впоследствии при строительстве Южно-лондонского железнодорожного туннеля в 1886 году, Грейтхед успешно объединил метод щитовой проходки и работы сжатым воздухом, это стало фундаментом для щитопроходной технологии в ее нынешнем виде. От первых неудач и разочарований Тревитика до изобретения Брюнелем щита с ручной экскавацией и последующего его усовершенствования и применения круглого щита Грейтхедом прошло долгих 80 лет. Применение сжатого воздуха в щитовой проходке ознаменовало собой крупный прогресс в прокладке туннелей в условиях напорных грунтовых вод, заполнило пробел в конструкции щитов и способствовало дальнейшему распространению щитопроходной технологии во всем мире.
С конца XIX века до середины XX века метод щитовой проходки последовательно проник в США, Францию, Германию, Японию, Советский Союз и другие страны, где получил развитие в разной степени. США первыми разработали щит закрытого типа в 1892 году; в том же году во Франции в Париже использовали бетонные кольцевые сегменты для строительства канализационного туннеля; в 1896–1899 годах Германия построила Берлинский туннель с использованием стальных тюбингов; а в 1913 году Германия построила под Эльбой туннель с сечением подковообразной формы; в 1917 году Япония применила метод щитовой проходки при строительстве Национальной железной дороги Хэцу, но из-за плохих геологических условий его пришлось приостановить; в 1931 году Советский Союз использовал английский щит при строительстве туннеля Московского метрополитена, в работах применялся метод химического бетонирования и застывания; в 1939 году Япония использовала круглый щит с ручной экскавацией для строительства туннеля Канмон диаметром 7 м; в 1948 году в Советском Союзе был построен туннель Ленинградского метрополитена; в 1957 году Япония применила щит закрытого типа для строительства туннеля токийского метро.
В период 60–80-х годов XX века метод щитовой проходки продолжил свое развитие, добившись значимых результатов. В 1960 году в Лондоне начали применять проходческую машину барабанного типа; в том же году в Нью-Йорке впервые были применены гидравлические домкраты для проходки щита; в 1967 году при строительстве туннеля Сайтама в Японии впервые использовался щит с гидропригрузом от компании «Мицубиси», в котором впервые была осуществлена технология нагнетания глинистой воды; в 1963 году японская компания «Satto Kogyo» представила щит с грунтопригрузом, и в 1974 году он был успешно применен в Токио, а в 1975 году был запущен щит с гидропригрузом. В 1978 году Япония представила разработку щита с гидропригрузом высокой концентрации; в 1981 году в Японии вышел в свет пузырьковый щит; в 1982 году Япония изобрела щитопроходный метод ECL (Extruded Concrete Lining – экструдированная бетонная обделка); в 1988 году там же был изобретен метод парнокольцевой проходки шламового типа; в 1989 году Япония представила разработку метода H&V и метода бетонирующей проходки. Таким образом, характерной особенностью данного периода стало изобретение множества новых типов щитовой проходки и широкое применение щитов с гидро- и грунтопригрузом.