Литмир - Электронная Библиотека

Хотя ни один человек с обычным цветовым зрением не может себе представить в полной мере, как видит мир тот, у кого нет красных колбочек, считается, что цвета при этом нарушении зрения варьируют от синего до белого и желтого, а красный и зеленый отсутствуют. Предполагается, что люди без гена, кодирующего зеленый опсин, видят мир приблизительно так же, только красные предметы кажутся им более яркими.

Одно из самых ранних известных упоминаний о каком-либо нарушении восприятия цветов датируется 1794 г. Оно содержится в лекции, которую прочел британский исследователь Джон Дальтон. «Часто я всерьез спрашивал кого-нибудь, розовый цветок перед нами или голубой, но обычно все думали, что я хочу над ними подшутить», – рассказывал Дальтон слушателям. Он подозревал, что стекловидная влага – жидкость внутри его глаз – может иметь синий оттенок. С разрешения Дальтона после смерти его глаза разрезали. Стекловидная влага в них была прозрачной. Только в 1990-е гг. ДНК Дальтона проанализировали, и оказалось, что в результате генной мутации в его колбочках отсутствовал зеленый опсин{19}.

Отсутствие синих колбочек, которое приводит к нарушениям восприятия синего и желтого цветов, встречается реже – примерно у одного человека из 10 000. Предполагается, что для таких людей мир окрашен в оттенки красного, белого и зеленого.

Хотя трихроматическое зрение, основанное на трех типах колбочек, – это норма, в некоторых случаях у женщин есть и четвертый тип колбочек[13]. Это не всегда приводит к тому, что их восприятие цветов отличается от стандартного. Но если реакция на свет у колбочек четвертого типа существенно отличается от реакций остальных трех типов колбочек, дополнительные колбочки могут повлиять на цветовосприятие. Так, Габриэль Джордан из Ньюкаслского университета обнаружила женщину с четвертым типом колбочек, способных воспринимать длинноволновую желто-оранжевую часть спектра. Благодаря наличию этих дополнительных «желтых» колбочек при проведении тестов на цветовое зрение, когда требовалось отличить смесь красного и желтого от чисто оранжевого, эта женщина показывала гораздо более высокие результаты по сравнению с обычными людьми. Она замечала нюансы оттенков, которые для большинства людей просто неразличимы{20}.

Но даже люди с обычным цветовым зрением видят одни и те же цвета по-разному. Группа ученых из США обнаружила значительное количество вариаций гена, кодирующего красный опсин. Когда исследователи изучили строение этого гена у 236 человек со всего земного шара, они выявили в общей сложности 85 его разновидностей (вариантов). Наличие разных вариантов этого гена, вероятно, влияет на восприятие красных и оранжевых оттенков, а это значит, что одно и то же «красное» яблоко выглядит для нас с вами немного по-разному{21}.

Палочки, позволяющие видеть при низкой освещенности, и колбочки, дающие возможность различать цвета… Еще совсем недавно, когда я была студенткой, считалось, что этим ограничиваются средства восприятия света сетчаткой. Наши глаза служат для зрительного восприятия, а эти клетки являются теми датчиками, которые позволяют нам видеть.

Правда, как оказалось, это только часть истории глаз. Несомненно, вы слышали о «внутренних часах» организма. На самом деле в организме человека несколько «внутренних часов», которые помогают координировать все – от пробуждения до пищеварения. Но главные «часы» расположены в мозге, а конкретнее, в гипоталамусе – области, отвечающей за важнейшие процессы жизнедеятельности. Чтобы эффективно работать, этим «часам» необходимо знать, когда начинается день и когда наступает ночь, и информацию об этом они получают от глаз, однако, как выяснилось, не через те рецепторы, которые обеспечивают нам способность видеть.

В 1998 г. американский нейробиолог германского происхождения Игнасио Провенсио обнаружил в коже гладкой шпорцевой лягушки меланопсин – совершенно иной светочувствительный пигмент{22}. В течение двух последующих лет он выяснил, что человеческая сетчатка тоже содержит это вещество.

В результате дальнейших экспериментов исследователи установили, что животные, слепые из-за отсутствия палочек и колбочек, тем не менее воспринимают общий уровень освещенности благодаря меланопсину, одному из светочувствительных белков сетчатки, и используют эту информацию для контроля своих суточных биоритмов. Было также обнаружено (например, в исследованиях с участием людей, работающих посменно), что такой контроль важен не только для регуляции сна, но и для физического и психического здоровья. Была даже обнаружена связь мутации в гене, кодирующем соответствующий белок, с сезонным аффективным расстройством (САР){23}, при котором у людей в темные зимние месяцы наблюдается сниженное настроение и депрессия.

Таким образом, чтобы помочь гипоталамусу понять, когда день начинается, а когда кончается, важно подвергать глаза действию яркого света утром, но не вечером. У Майкла Термана, главы Центра светолечения и биологических ритмов при Колумбийском университете, есть в запасе несколько приемов, помогающих максимально улучшить работу этой системы. По возможности ходите на работу пешком и старайтесь не носить солнцезащитные очки. В помещении используйте много ярких ламп – но таких, чтобы к вечеру их свет можно было приглушить и снизить его интенсивность. Опираясь на свой опыт, Терман утверждает, что повышение уровня освещенности днем помогает снизить усталость, которую многие из нас ощущают в послеобеденные часы или ранним вечером, а если это сочетать с понижением освещенности помещения вечером, то такие условия помогают еще и улучшить сон{24}. То же самое можно сказать и в отношении многих невидящих людей; после открытия меланопсина им стали рекомендовать не носить темные очки.

Следовательно, глаз – не просто орган зрения. Это еще и орган, позволяющий ощутить одно из важнейших изменений в окружающей среде, которое нам и огромному количеству других организмов необходимо отслеживать, чтобы выживать и процветать, – смену дня и ночи.

Хотя глаз, как отмечал Аристотель, играет роль органа зрения, мы видим не глазами, а мозгом. И некоторые из наиболее поразительных различий в том, как мы видим мир, связаны с тем, как мозг разных людей обрабатывает зрительную информацию.

Давайте рассмотрим это подробнее. Вы только что проснулись, встали, раздвинули шторы, и свет заливает вашу спальню. Когда он проникает в глаза и воздействует на палочки и колбочки, нервные импульсы устремляются по зрительному нерву к головному мозгу. Их первая остановка – таламус, небольшая структура прямо над стволом мозга, работающая как перевалочный пункт для информации от разных органов чувств. Одна из главных задач таламуса – направлять входящую сенсорную информацию (за исключением обонятельной) для ее дальнейшей обработки в соответствующие участки коры больших полушарий{25}.

Сигналы от сетчатки таламус перенаправляет прямо в V1 – тоненький пласт клеток, из которых состоит наша первичная зрительная кора{26}. Разные популяции нейронов V1 отвечают на разные стимулы. Некоторые реагируют на края или линии, направленные под определенным углом, – допустим, вертикальные линии на занавесках или прямые углы по краям кровати либо шкафа для одежды. Из V1 визуальная информация также поступает в другие участки зрительной коры, отвечающие, помимо прочего, за распознавание цветов, движений, форм и лиц{27}. Если вы, например, увидели, что из-под одеяла вам улыбается ваша дочь, а не супруг, это значит, что ваша веретенообразная извилина получила уже частично обработанную зрительную информацию. Этот небольшой участок зрительной коры обеспечивает распознавание лиц – притом не обязательно человеческих; он отреагирует и на морды животных, и даже на лица персонажей мультфильмов{28}. (У некоторых животных, например у собак, тоже есть участки коры, реагирующие на человеческие лица{29}.)

вернуться

19

Hunt, David M., et al., 'The Chemistry of John Dalton's Color Blindness', Science 267.5200 (1995): 984–8.

вернуться

13

Они есть только у женщин: таковы уж закономерности наследования генов белка опсина.

вернуться

20

Jordan, Gabriele, et al., 'The Dimensionality of Color Vision in Carriers of Anomalous Trichromacy', Journal of Vision, 10.8 (2010): 12–12.

вернуться

21

Winderickx, Joris, et al., 'Polymorphism in Red Photopigment Underlies Variation in Colour Matching', Nature, 356.6368 (1992): 431–3.

вернуться

22

Provencio, Ignacio, et al., 'Melanopsin: An Opsin in Melanophores, Brain, and Eye', Proceedings of the National Academy of Sciences, 95.1 (1998): 340–5.

вернуться

23

Roecklein, Kathryn A., et al., 'A Missense Variant (P10L) of the Melanopsin (OPN4) Gene in Seasonal Affective Disorder', Journal of Affective Disorders, 114.1–3 (2009): 279–85.

вернуться

24

Terman, Michael, and McMahan, Ian, Chronotherapy, Penguin (2012).

вернуться

25

Sherman, S., and Guillery, R., 'The Role of the Thalamus in the Flow of Information to the Cortex', Philosophical Transactions of the Royal Society B: Biological Sciences, 357.1428 (2002): 1,695–1,708, https://doi.org/10.1098/rstb.2002.1161.

вернуться

26

Huff, T., Mahabadi, N., and Tadi, P., 'Neuroanatomy, Visual Cortex', StatPearls (2019), pmid: 29494110.

вернуться

27

Cicmil, Nela, and Krug, Kristine, 'Playing the Electric Light Orchestra: How Electrical Stimulation of Visual Cortex Elucidates the Neural Basis of Perception', Philosophical Transactions of the Royal Society B: Biological Sciences, 370.1677 (2015), https://doi.org/10.1098/rstb.2014.0206.

вернуться

28

Kanwisher, N., Stanley, D., and Harris, A., 'The Fusiform Face area is Selective for Faces Not Animals', Neuroreport, 10.1 (1999): 183–7.

вернуться

29

Cuaya, L. V., Hernández-Pérez, R., and Concha, L., 'Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation During Perception of Human Faces', PloS ONE, 11.3 (2016): e0149431.

6
{"b":"899784","o":1}