Литмир - Электронная Библиотека
A
A

NemtyrevAI

Data Science. Практика

Введение:

В этой книге мы рассмотрим практические примеры обработки данных. Мы будем работать с различными типами данных, включая текст, изображения и звуки. Книга адресована как начинающим дата-сенсам, так и опытным специалистам, которые хотят отдохнуть от постоянного подключения к сети и научиться работать с данными в офлайн-режиме.

Data Scientist – это специалист по работе с данными для решения задач бизнеса. Он работает на стыке программирования, машинного обучения и математики. В основные обязанности дата-сайентиста входит сбор и анализ данных, построение моделей, их обучение и тестирование

Они специализируются на работе с данными для решения бизнес-задач и используют свои знания в области программирования, машинного обучения и математики для сбора, анализа и обработки данных. К основным обязанностям дата-сайентиста относятся:

Сбор данных: это включает в себя сбор данных из различных источников, таких как базы данных, APIs, веб-сканирование и другие.

Очистка данных: дата-сайентисты должны удалять неточные или поврежденные данные и приводить данные к единому формату.

Анализ данных: это включает в себя изучение данных с использованием статистических методов и визуализации данных для обнаружения тенденций и моделей.

Построение моделей: дата-сайентисты используют алгоритмы машинного обучения, чтобы создать модели, которые могут предсказывать результаты на основе данных.

Обучение и тестирование моделей: дата-сайентисты обучают модели на основе обучающих данных, а затем тестируют их на тестовых данных, чтобы убедиться в их точности и эффективности.

Общая коммуникация: дата-сайентисты должны быть способны эффективно коммуницировать свои результаты и рекомендации другим членам команды и руководству.

В целом, роль дата-сайентиста является ключевой для многих компаний, которые стремятся использовать данные для принятия более информированных решений и повышения эффективности бизнеса.

Для дата-сайентистов наиболее важными языками программирования являются:

1. Python: это один из самых популярных языков программирования для дата-сайентистов, поскольку он легко учиться и имеет богатую экосистему библиотек для обработки данных, машинного обучения и визуализации. Python широко используется в научных и инженерных областях, и многие компании используют его для обработки больших данных.

2. R: это язык программирования, специально разработанный для статистического анализа и визуализации данных. Он популярен среди академических и научных кругов и имеет много полезных библиотек для статистического моделирования, машинного обучения и визуализации.

3. SQL: это язык запросов баз данных, используемый для извлечения, фильтрации и манипулирования данными в реляционных базах данных. SQL является основным инструментом для работы с данными для многих компаний, и знание этого языка является необходимым навыком для дата-сайентистов.

4. Java: это универсальный язык программирования, который используется во многих областях, включая веб-разработку, мобильное программирование и обработку больших данных. Java часто используется для создания распределенных систем обработки данных и имеет большую библиотеку библиотек для обработки данных, таких как Apache Hadoop и Spark.

5. JavaScript: это язык всем известный, который широко используется для создания веб-приложений и интерфейсов пользователя. JavaScript также может использоваться для анализа данных и визуализации, и он имеет несколько библиотек, таких как D3.js и Three.js, которые широко используются для визуализации данных.

Знание нескольких языков программирования может быть полезным для дата-сайентистов, поскольку это позволяет им работать с разными типами данных и инструментами, используемыми в их компаниях мы же будем разбирать Python.

Для обработки данных и машинного обучения в Python существует множество полезных библиотек такие как:

1. Pandas: это библиотека для обработки и анализа данных в Python. Она предоставляет эффективные инструменты для работы с табличными данными и позволяет легко читать, манипулировать и писать данные в различных форматах, таких как CSV, Excel и SQL.

2. NumPy: это библиотека для работы с многомерными массивами и матрицами в Python. Она предоставляет эффективные инструменты для операций с векторными и матричными данными, такие как вычисление матриц, транспонирование и умножение.

3. Scikit-learn: это библиотека машинного обучения в Python, которая предоставляет множество алгоритмов и инструментов для классификации, регрессии, кластеризации и других задач машинного обучения. Она также предоставляет функции для оценки моделей и выбора гиперпараметров.

4. Matplotlib: это библиотека визуализации данных в Python, которая предоставляет инструменты для создания различных типов графиков, таких как гистограммы, скаттеры, boxplots и т.д.

5. Seaborn: это библиотека, построенная поверх Matplotlib, которая предоставляет более высокоуровневые инструменты для статистической визуализации данных. Она делает простой визуализацию сложных данных, таких как множественная регрессия, графики распределения и т.д.

6. TensorFlow: это библиотека машинного обучения от Google, которая предоставляет инструменты для создания и обучения сложных моделей глубокого обучения. Она поддерживает различные типы нейронных сетей, такие как свёрточные нейронные сети и рекуррентные нейронные сети.

7. Keras: это библиотека машинного обучения, которая предоставляет простой и модульный интерфейс для создания и обучения моделей глубокого обучения. Она поддерживает различные типы нейронных сетей и может работать поверх TensorFlow, Theano и CNTK.

Эти библиотеки являются лишь небольшим подбором из множества библиотек, доступных для обработки данных и машинного обучения в Python. Каждая библиотека имеет свои особенности и преимущества, поэтому выбор зависит от конкретных потребностей конкретного проекта, давайте рассмотрим мою любимую Scikit-learn на ней я разработал AI API-сервисы:

"GenderDetect AI" – модель определения пола по имени

"GeoLocate AI" – модель определения геолокации по IP-адресу

"ProviderInfo AI" – модель определения провайдера по IPv6

Библиотека Scikit-learn поддерживает множество алгоритмов машинного обучения, такие как:

1. Классификация:

* Logistic Regression (логистическая регрессия)

* Linear Discriminant Analysis (линейный дискриминантный анализ)

* Decision Trees (дерево решений)

* Random Forests (случайные леса)

* Support Vector Machines (машины опорных векторов)

* K-Nearest Neighbors (k ближайших соседей)

* Gradient Boosting (градиентный бустинг)

2. Регрессия:

* Linear Regression (линейная регрессия)

* Ridge Regression (линейная регрессия с регуляризацией)

* Lasso Regression (линейная регрессия с L1-регуляризацией)

* Polynomial Regression (полиномиальная регрессия)

* Support Vector Regression (регрессия с машиной опорных векторов)

* Decision Trees Regression (регрессия с деревом решений)

1
{"b":"895905","o":1}