Среди полигональных форм особое место занимают пятиугольники. Так, параллелотопы, образующие мозаику почвенного покрова, не включают в себя пятиугольники. Какова Их роль в формообразовании? Кто из почвоведов встречал пятиугольные ареалы? В геологии они известны (рис. 15, Е, г). И это странно. Ведь пятиугольные блоки земной коры не могут образовать плотной упаковки. Если их приложить один к другому, то между ними останутся промежутки. Правильными пятиугольниками нельзя покрыть плоскость без зазоров, а сферу можно сложить только узором, состоящим из пятиугольников, окруженных шестиугольниками, подобно футбольному мячу.
Пятиугольные формы особенные, но не только в структурном плане. Еще одно обстоятельство привлекает к ним внимание. Дело в том, что ось L5, описывающая форму пятиугольника, является той самой загадкой, с которой связывают развитие жизни на Земле: Книга А. А. Малахова (1965) так и называется «L5 — симметрия жизни». В 1940 г. академик А. В. Шубников писал, что среди представителей живой природы чаще всего встречаются формы с пятерной симметрией. В 1962 г. академик Н. В. Белов предположил, что пятерная ось является у мелких организмов своеобразным инструментом борьбы за существование, страховкой против окаменения, первым шагом которой была бы их «поимка» решеткой.
Пятиугольники, видимо, появляются в местах, где симметрия почвенного покрова нарушается вследствие появления асимметричных участков — дислокаций. Последние — очаги нарушения равновесия, ведущие к разрушению сочетаний почвенных форм одного порядка и к возникновению диссипативных почвенных структур другого порядка. Почвенный покров, как и все природные тела, эволюционирует, изменяет организацию и облик узора в течение геологически длительного времени. Это его обязательный признак. С увеличением размеров и уменьшением числа форм почвенная, структура становится симметричнее, приобретая равновесное состояние. Изменение среды, способствующее деградации почв, приводит к дислокациям, к уменьшению размеров ареалов; их упаковка делается плотнее, происходит общая диссимметризация почвенной системы, нарушение ее внутренних связей.
Таким образом, изучение эволюции почвенных элементов и систем с помощью принципов симметрии-диссимметрии в скором времени станет актуальной темой в теории почвообразования.
КЛЕТОЧНАЯ СТРУКТУРА ЗЕМЛИ
И ПОЧВЕННОГО ПОКРОВА
Планигоны суши определяют естественные границы почв и ландшафтов на всех уровнях организации. При этом от уровня к уровню закономерно изменяются размеры ареалов; через определенные геометрические интервалы преобразуется их качество. Об этом писали еще В. И. Вернадский и Б. Л. Личков. Учению об уровнях предшествовала концепция диспропорциональности. Диспропорциональность — важная качественная черта пространства Вселенной, позволяющая выделить в нем разные состояния симметрии. Б. Л. Личков (1960), ссылаясь на В. Н. Хитрово, указывал, что виды состояний геометрического пространства земной коры зависят от размеров слагающих ее объектов: при малых оно имеет одни свойства, при больших — другие. Чем меньше по размеру объект, тем больше у него отношение периметра к площади поверхности, а последней — к объему.
Если от геометрического пространства перейти к пространству материальному, то изменения количественных отношений периметра к поверхности и поверхности к объему обусловят качественные изменения, ибо, как писал Хитрово, «…нет подобия тел вне геометрии» [цит. по: (Личков, 1960, с. 67)]. Эти качества и определяют виды состояний геометрического пространства, или его структурные уровни, иерархию геологических и почвенных тел, рельефа.
Н. Ф. Гончаров с соавторами (1975) выдвинул интересную гипотезу, согласно которой Земля разбита на двадцать треугольников, образующих многогранник — сферический икосаэдр — своеобразный кристалл. Каждый элемент этого «кристалла» имеет свое значение: вершины треугольников — местоположение мировых цивилизаций, крупных месторождений; вдоль одного из ребер в пределах СССР проходит полоса царственных почв — черноземов, а в центрах «европейского» и «сибирского» треугольников расположены обширные биогеохимические аномалии. Эта гипотеза долго не принималась всерьез. Но в последние годы появляются данные, подтверждающие многие ее положения.
Проблема разбиения земной коры трещинами на правильные фигуры в наши дни рассматривается не только в геометрическом, но и в генетическом аспекте.
Важно знать, как они образуются. Одни исследователи считают, что Земля разбита трещинными разломами по направлениям: СЗ — ЮВ, СВ — ЮЗ, 3 — В, Ю — С. Трещины чередуются с интервалом в 30–60°, в среднем в 45°; их сеть образует клеточную структуру, но неподвижную, стационарную. Другие полагают, что эта структура мобильна: блоки земной коры перемещаются со сдвигом по окружности.
Клеточная геологическая структура, или каркас земной коры, передает свой геометрический рисунок почвенному покрову, который может состоять из всех форм параллелогонов и планигонов (рис. 15, Д), а также сочетаться на плоскости всеми пятью способами (см. рис. 2). Формы геологических тел во многом определяют границы почвенных ареалов, их специфику, связанную с особенностью литологического состава горных пород. Но солнечная энергия и гравитация вносят свои коррективы.
Клеточная структура почвенного покрова — явление не случайное. Оно вызвано необходимостью аккумулировать с помощью растений солнечную энергию, преобразовывать ее и передавать от клетки к клетке. Солнце выдает на поверхность почвы определенные кванты энергии. Дальнейшая судьба свободной энергии зависит от способности почвенных структур, эволюционируя, организовать мобильность диссипативных форм. В этом убеждает рис. 16, из которого видно, что почвы теснее связаны с границами тектоно-геологического фундамента, чем с климатическими поясами. Почвенные ареалы крупных территорий, объединяющие несколько сходных типов почв, следуют полигональным и криволинейным геолого-тектоническим телам. Внутри этих тел ареалы образуют упорядоченные однородности иного рода — по типам и подтипам почв, а затем на другом, более низком уровне — мобильные диссипации, родовые и видовые.
Рис. 16. Фрагмент карты почвенных структур Казахстана. Спиральные, кольцевые (а, б), синусоидальные (в) и линейные (г) структуры
Можно предположить, что периодически возобновляемые гармоничные изменения земной коры и почвенного покрова коррелируют не только с прямым притоком энергии Солнца, но и с характером преобразования этой энергии системой почвенно-геологических блоков-клеток. Наши знания о ландшафте будут недостаточными до тех пор, пока мы не выясним, на каком эволюционном уровне упорядоченности структур (юности, зрелости или старости) находятся изучаемые участки земной коры и почвенного покрова.
СИММЕТРИЯ ФОРМ
Многообразие природных форм вызывает необходимость построения их единого алфавита. Е. С. Федоров (1901) установил, что число возможных форм равно 230. Его работы послужили мощным импульсом к изучению конфигураций тел во всех науках. Однако анализ форм вообще, в отрыве от вещественного состава, носит абстрактный характер. Внимание привлекают работы, в которых обнаруживаются связи между формами и веществом. Так, О. М. Калинин получил проективное многообразие, расширяющее группу Федорова до 273, связав это число с изотопным составом химических элементов.
Почвоведы, геологи и географы используют теорию формообразования, основные положения которой базируются на элементах и операциях симметрии. С их помощью строятся полигональные, криволинейные и ветвящиеся формы почвенных тел разных уровней организации. Поэтому поиск связи форм с элементами и операциями симметрии для почвоведения имеет особое значение.