Литмир - Электронная Библиотека
A
A

Вообще, понятие «обрабатывающая среда» довольно абстрактно. Практически это может быть физическая среда, свойства которой дают ей возможность производить вычисления. Кусок стекла, которому придана форма линзы, - уже вычислитель! Он «умеет» вычислять Фурье-преобразование оптических сигналов… Но вот беда: существует так называемый критерий физической реализуемости. В частности, он означает, что не для всякого вычисления можно подобрать (или создать) соответствующую физическую среду. Но даже если критерий физической реализуемости удовлетворяется, практически создать необходимую среду невероятно трудно!

Гораздо продуктивнее моделировать обрабатывающие среды в цифровом виде. Чтобы сделать это, мы должны взять цифровой процессор (любой! хоть арифмометр) и написать для него программу, эмулирующую информационные процессы и структуру нужной нам обрабатывающей среды. Тем самым мы как бы создаем «виртуальную оболочку» вокруг обрабатывающей среды физического уровня, в качестве которой выступает процессор. Что при этом происходит? А вот что: мы преодолеваем критерий физической реализуемости.

Следующий важный вопрос, мимо которого не пройти: что мы хотим получить? Если под «процессором будущего» понимать просто «ну очень быстрый процессор», то, думается, за этим дело не станет. Но, видимо, мы хотим чего-то большего… Чего?

Честный ответ: хотелось бы создать модель себя. По крайней мере, в части восприятия и обработки приходящей извне информации.

А что это значит, если говорить языком технического задания?

Во-первых, быстродействие. Производительность цифровых процессоров зависит от частоты, разрядности и распараллеливания вычислительных процессов. У аналоговых вычислителей таких ограничений нет, но есть много своих специфических «минусов» и существует упоминавшийся выше критерий реализуемости (поскольку аналоговый процессор - это, собственно, физическая обрабатывающая среда «в чистом виде»). А что, если окружить цифровой процессор виртуальной аналоговой «оболочкой»? Из чего ее сделать? Вариант ответа: эта «оболочка» может представлять собой стохастический вычислительный процесс, оперирующий вероятностями, и тогда отпадают ограничения по быстродействию!

Во-вторых, отсутствие необходимости в программировании. Раз нет программирования, следовательно - самообучение? Да. Нейроподобные сетевые структуры. Об их свойствах написаны горы книг, однако сейчас имеет смысл отметить следующее: нейросети - аналоговые обрабатывающие среды, которые мы давным-давно научились реализовывать в качестве «оболочек» над цифровыми процессорами, но… Но при этом нейросети, реализованные в форме программ, оперирующих цифровыми входными сигналами, сами становятся цифровыми, теряя в быстродействии и в качественных показателях. Один из перспективных вариантов разрешения этого противоречия заключается в создании стохастических нейроалгоритмов, позволяющих сохранять аналоговые принципы функционирования нейросетей при цифровом моделировании(Большая работа в этом направлении проводилась в Киевском институте кибернетики им. В. М. Глушкова под руководством академика Н. М. Амосова, в частности, Э. М. Куссулем, А. М. Касаткиным, Л. М. Касаткиной, Т. В. Федосеевой).

В-третьих, отсутствие жестких алгоритмов функционирования - свойство, открывающее возможности адаптивного поведения и динамического целеполагания. Исследования в этом направлении, проводившиеся у нас и за рубежом, показали, что глубинная суть этих процессов с достаточной степенью адекватности описывается лишь аппаратом теории динамического хаоса. Иными словами, чтобы воссоздать «на практике» обрабатывающую среду, обладающую требуемым «поведением», необходимо либо каким-то образом синтезировать ее «в железе», либо смоделировать нужный тип нелинейной динамики. Во втором случае для этого легче всего использовать все те же стохастические нейросети или матрицы вероятностных клеточных автоматов.

По существу, создавая нейросетевую модель нелинейной динамической системы с нужным нам поведением (не детерминированным, а в среднем!), мы тем самым создаем еще одну «оболочку» - уже вторую! - над исходной физической обрабатывающей средой - цифровым процессором.

Портрет героя

Впечатляющей футуристической картины под названием «Процессор будущего» не получилось. Жаль, если я кого-то разочаровал. Но мне действительно представляется маловероятным резкий (с чего бы вдруг?! И у кого?) рост интереса к созданию каких-то принципиально новых обрабатывающих сред физического уровня - электронных, биологических и даже квантовых.

Гигантский прогресс технических характеристик обычных микропроцессоров и, что особенно важно, накопление огромного арсенала средств разработки - как самих микросхем, так и программного обеспечения всех уровней, - как мне кажется, породили своеобразную «потенциальную яму», «выпрыгнуть» из которой чрезвычайно трудно - нужно много энергии, аналогом которой в данном случае выступают деньги.

Впрочем, всегда есть ненулевая вероятность «туннельного просачивания» сквозь стенки любых потенциальных ям. И для этого, как известно, не нужно много той самой «энергии»!

Практичная теория: день открытых дверей в творческой лаборатории изобретателя

«Физические эффекты и явления - костяк той самой физики, которую современный изобретатель годами изучает в школе и в институте. К сожалению, изобретательскому применению физики там не учат… Изобретателям надо присматриваться к давно знакомым эффектам и явлениям, приучаясь видеть в них рабочие инструменты для творческого решения изобретательских задач».

Генрих Альтшуллер, «Алгоритм изобретения»

Начну с главного тезиса. Все технические системы, устройства и приборы были кем-то изобретены.

Поэтому, когда мне было предложено рассказать о «технологии изобретания» компьютерных устройств послезавтрашнего дня, да еще основанных на новых физических принципах, я понял, что меня провоцируют. По существу, мне предлагалось поиграть в деловую игру «Назвался груздем…»[Автор является руководителем семинара по ТРИЗ]. В первый момент, каюсь, «взыграло»… Короче говоря, я отбросил тщеславные попытки практически изобрести невиданный процессор, а попытался рассказать о возможных подходах к решению этой задачи, основанных на ТРИЗ - Теории Решения Изобретательских Задач, созданной нашим талантливым соотечественником Генрихом Сауловичем Альтшуллером.

22
{"b":"87353","o":1}