Литмир - Электронная Библиотека

Если форма импульсов другая, следует поменять местами выводы на одной из обмоток трансформатора Т1.

Электрическая схема блока питания термостабилизатора может быть собрана по одному из приведенных ниже вариантов. Обе схемы имеют внутреннюю электронную защиту от перегрузки и в особых пояснениях не нуждаются, так как являются типовыми. При использовании одного источника питания для нескольких термостабилизаторов включение каждой схемы управления производится отдельным тумблером.

Топологии печатных плат и расположение деталей приведены далее. Симистор устанавливается на радиатор, состоящий из двух медных пластин, одна из которых показана на рисунке. Для подключения внешних цепей используются винты М3 и М4 с гайками.

Печатная плата источника питания, вариант 2

В схеме применена прецизионная микросхема, и замена ее на другой тип недопустима, так как это ухудшит точность поддержания температуры из-за увеличения дрейфа нуля, который будет соизмерим с величиной сигнала от термопары.

Импульсный трансформатор Т1 наматывается проводом ПЭЛШО-0,18 на ферритовом кольце М4000НМ1 типоразмера К16х10х4 мм или кольце М2000НМ1 — К20х12х6 мм и содержит в обмотке 1-80 витков, 2-60 витков. Перед намоткой острые грани сердечника нужно закруглить надфилем. Иначе они прорежут провод. После намотки и пропитки катушки лаком нужно обязательно убедиться в отсутствии утечки между обмотками, а также обмотками и ферритом каркаса.

Остальные детали схемы не критичны и могут быть любого типа, например: переменные резисторы R1 и R2 типа СПЗ-4а; R3 и R4 — подстроенные многооборотные СП5-2; постоянные резисторы типа С2-23; электролитические конденсаторы С6 и С7 — К53-1А на 16 В; остальные — типа К10-17. Диоды VD2, VD3 предназначены для защиты схемы от неправильного подключения источника питания и могут быть любыми, на ток до 100 мА.

Подключая схему управления, необходимо соблюдать положение фазы, указанное на рисунке (при правильном соединении на радиаторе симистора должна находиться фаза сетевого напряжения). Это особенно важно, если от одного источника питания включено несколько термостабилизаторов.

При подаче питания на схему управления должен включиться нагрев нагрузки RH. Индикатором включения нагревателя является свечение светодиода HL1 или включенной параллельно с нагрузкой лампы.

Для настройки температуры стабилизации устанавливаем в среднее положение регуляторы R1, R2 и, дождавшись повышения температуры в зоне нагрева до нужной величины, регулятором ГРУБО добиваемся отключения нагревателя.

Когда процесс термостабилизации установится, скорректировать температуру можно регулятором ТОЧНО.

Схема позволяет иметь несколько фиксированных значений температуры при переключении S1. В этом случае нужная температура настраивается соответствующими подстроечными резисторами R3 и R4 на плате управления.

Регулятор мощности для нагревателей

Многие пользуются бытовыми электроплитами, а также другими электрическими нагревательными приборами. Некоторые из них, например двухконфорочная электроплитка "Россиянка", имеют термоэлектрические регуляторы нагрева. Терморегулятор позволяет не только экономить электроэнергию, но и делает более удобным процесс приготовления еды.

Термоэлектрические регуляторы обладают низкой надежностью и требуют периодического ремонта или подрегулировки. Избавиться от этих забот поможет схема электронного регулятора мощности. Схема позволяет плавно регулировать нагрев двух нагревателей мощностью по 2 кВт каждый.

Использование бесконтактной электронной регулировки мощности в нагрузке не только повышает надежность работы всего устройства, но и позволяет легко дополнить схему таймером (АЗ), который может через заданный интервал времени отключить нагреватель (ЕК2). Схема таймера (АЗ) в данной статье не приводится — она может быть любой из опубликованных в литературе.

Для удобства размещения терморегулятора внутри корпуса плитки конструктивно схема выполнена в виде двух узлов на платах с размерами 155x55 мм (схемы А1 и А3 лучше располагать на одной плате).

Электрическая схема блока управления собрана на однопереходных транзисторах и является типовой. Коммутация нагрузки производится с помощью мощных тиристоров VS1 и VS2. Элементы схемы выбраны со значительным запасом по рабочему току, с учетом возможного их размещения (без радиатора) вблизи от нагревательных элементов.

Монтаж силовых цепей схемы (блока А2) выполняется проводом, сечением не менее 2,5 кв. мм в термостойкой изоляции.

В устройстве применены переменные резисторы R1 и R2 типа ППБ-15Г, остальные — типа С2-23. Конденсаторы С1…С4 типа К73-9 на 100 В.

В качестве предохранителей F1, F2 можно использовать перемычки из медного провода диаметром 0,3 мм. Варистор RU1 предназначен для защиты элементов схемы от кратковременных бросков напряжения в питающей сети и может применяться типа СН1-1 на 560 В.

Настройка схемы производится резисторами R3 и R7 для получения максимального напряжения в нагрузке при нулевом значении резисторов R1 и R2. Из-за большого технологического разброса параметров однопереходных транзисторов иногда может потребоваться также подбор конденсаторов С1 и СЗ.

Блоки схемы регулятора мощности: А1 — блок управления, А2 — блок коммутации, АЗ — временной таймер, ЕК1 и ЕК2 — нагревательные элементы.

Электрическая схема блока управления

Управление электромотором постоянного т ока

Во многих станках применяют электромоторы (ЭМ) постоянного тока. Они легко позволяют плавно управлять частотой вращения, изменяя постоянную составляющую напряжения на якорной обмотке, при постоянном напряжении обмотки возбуждения (ОВ).

Схема электропривода

Электрическая схема будет полезна тем, кто собирает для себя необходимый станок или устройство с электроприводом. Схема позволяет управлять электромотором мощностью до 5 кВт.

Мощные ЭМ постоянного тока имеют несколько особенностей, которые необходимо учитывать:

а) нельзя подавать напряжение на якорь ЭМ без подачи номинального напряжения (обычно 180…220 В) на обмотку возбуждения;

б) чтобы не повредить мотор, недопустимо сразу подавать при включении номинальное напряжение на якорную обмотку, из-за большого пускового тока, превышающего номинальный рабочий в десятки раз.

Приведенная схема позволяет обеспечить необходимый режим работы — плавный запуск и ручную установку нужной частоты вращения ЭМ.

Направление вращения изменится, если поменять полярность подключения проводов на обмотке возбуждения или якоре (делается это обязательно только при выключенном ЭМ).

240
{"b":"870525","o":1}