Программное управление фильтром позволяет гибко оперировать длиной фильтра и коэффициентом децимации. Фильтр может иметь до 108 коэффициентов, до 5 режимов прореживания и коэффициенты децимации от 2 до 256. При обработке коэффициентов поддерживается точность 24 разряда, а при арифметических операциях — 30 разрядов.
AD7725 содержит процессор постобработки PulseDSP™ компании Systolix, который позволяет запрограммировать характеристики фильтра через параллельный или последовательный интерфейс микропроцессора.
Процессор постобработки имеет полностью программируемое ядро, которое обеспечивает производительность обработки до 130 миллионов операций умножения с накоплением в секунду (MAC). Процесс программирования процессора сводится к редактированию пользователем конфигурационного файла, который содержит все необходимые данные для программирования функций фильтра. Этот файл создан с помощью компилятора FilterWizard, который поставляется Analog Devices. Компилятор AD7725 воспринимает значения коэффициентов фильтра как входные данные и автоматически генерирует необходимый программный код устройства.
Файл коэффициентов отклика фильтра может быть сгенерирован с помощью пакетов проектирования цифровых фильтров типа Systolix FilterExpress™ (http://www.systolix.co.uk) или QEDESIGN ™ компании Momentum Data Systems (http://www.mds.com). Отклик фильтра может быть построен на основе данных, известных пользователю до генерации коэффициентов фильтра. Скорость потока входных данных процессора — 2,4 МГц. Если прореживание применяется в многоступенчатом фильтре, первый фильтр будет обрабатывать поток данных со скоростью 2,4 MSPS, и пользователь может затем производить децимацию между каскадами. Максимальное число коэффициентов фильтра, которые могут поддерживаться процессором, равно 108. При этом фильтр со 108 коэффициентами может быть выполнен в виде одиночного или многокаскадного фильтра с суммарным числом коэффициентов 108. Фильтр может иметь характеристики НЧ-фильтра, ВЧ-фильтра, режекторного или полосового фильтра и может быть выполнен как КИХ- или БИХ-фильтр.
AD7725 работает от однополярного источника питания +5В. Он имеет внутрикристальный источник опорного напряжения 2,5 В и выпускается в 44-выводном PQFP корпусе. При работе на максимальной тактовой частоте потребляемая мощность не превышает 350 мВт. Возможна работа в режиме сниженной в два раза максимальной частоты задающего генератора -10 МГц. Максимальная потребляемая мощность в этом режиме составляет 200 мВт.
Резюме
Некоторые примеры использования DSP в различных областях приведены на рис. 9.30. Помимо описанных выше, имеется много других областей, где сфера применимости DSP на практике быстро расширяется: это промышленность, связь, медицинская и военная техника и потребительский рынок. Обсуждение каждого примера могло бы стать предметом отдельной книги. Но в этой главе показано только несколько наиболее традиционных областей применения DSP и дано представление о том, как DSP взаимодействуют практически с каждым аспектом современной жизни.
ДРУГИЕ ОБЛАСТИ ПРИМЕНЕНИЯ ПРОЦЕССОРОВ DSP
• Автомобильные телефоны с голосовым управлением (hands-free)
• Цифровые автоответчики
• Устройства распознавания голоса
• Кабельные сети
• Компьютерная звуковая система
• Цифровое аудио: профессиональное и бытовое
• Обработка цифрового видеосигнала
• Телевидение высокой четкости (HDTV)
• Компьютерная графика
• Цифровые спецэффекты
• Цифровые вещательные спутники (DBS)
• Система глобального позиционирования (GPS)
• Медицина: ультразвуковые, ядерномагниторезонансные сканнеры, томографы
• Военная индустрия: радиолокационные станции, наведение ракет на цель
Рис. 9.30
Глава 10
Методы проектирования аппаратного обеспечения
Уолт Кестер
Низковольтные интерфейсы
Этан Бордо, Иоханнес Хорват, Уолт Кестер
В течение последних 30 лет стандартным напряжением питания (VDD) цифровых схем оставалось напряжение 5 В. Такое значение напряжения использовалось для обеспечения нормального режима работы биполярного транзистора. Однако в конце 80-х стандартной технологией при проектировании ИС стала технология КМОП. Для микросхем КМОП не является обязательным использование того же напряжения, что и для микросхем, выполненных по технологии ТТЛ, но для обеспечения совместимости со старыми системами промышленность адаптировала уровни логических сигналов к уровням сигналов ТТЛ. (Приложение 1).
Нынешняя революция в снижении напряжения питания микросхем происходит по причине роста требований к скорости и компактности интегральных микросхем при минимальной стоимости. Эти растущие требования привели к уменьшению размеров топологии кристалла с 2 мкм (в начале 80-х) до 0.25 мкм; такая топология используется при разработке современных микропроцессоров и ИС. Благодаря тому, что эти размеры стали значительно меньше, напряжение, необходимое для оптимальной работы устройства, также упало ниже уровня в 5 В. Это видно на примере микропроцессоров для компьютеров, где оптимальное значение напряжения для питания ядра процессора определяется с помощью выводов идентификации напряжения питания (VID pins) и может снижаться вплоть до уровня 1.3 В.
Большой интерес к низковольтным DSP отчетливо наблюдается в смещении процента продаж между 5 В и 3,3 В микросхемами. Объем продаж 3.3-вольтовых DSP вырос более чем вдвое по сравнению с остальными DSP (30 % для всех DSP, 70 % — устройства с напряжением питания 3.3 В). Этот процесс будет продолжаться, так как огромный и постоянно растущий рынок портативных устройств потребляет цифровые сигнальные процессоры, которые обладают всеми чертами низковольтных цифровых процессоров.
С одной стороны, низковольтные ИС работают при малой потребляемой мощности, имеют меньшие размеры и более высокие скорости. С другой стороны, низковольтные ИС часто должны работать совместно с ИС, которым необходимо большее напряжение питания VDD, из-за чего возникают проблемы совместимости. Хотя низкое рабочее напряжение означает уменьшение размаха сигнала, и следовательно, шум переключения становится меньше, но для микросхем с низким напряжением питания уменьшается допустимый для нормальной работы устройства уровень шума (запас помехоустойчивости).
НИЗКОВОЛЬТНЫЕ ИС СО СМЕШАННЫМИ СИГНАЛАМИ
• Малая потребляемая мощность для применения в портативных устройствах
• ИС с напряжением питания 2.5 В могут работать от двух щелочных элементов
• Высокое быстродействие КМОП-процессоров, меньшие размеры, меньшее напряжение пробоя
• Несколько напряжений питания в системе: +5 В, +3.3 В, +2.5 В, напряжение питания ядра процессора +1.8 В, напряжение питания аналоговой части
• Между ИС разных стандартов требуется интерфейсы
• Меньшая амплитуда напряжения сигнала образует меньше шума при переключении
• Меньший запас помехоустойчивости
• Меньшее напряжение питания в аналоговых схемах приводит к уменьшению размаха сигнала и увеличивает чувствительность к шумам (но это предмет целого семинара!)
Рис. 10.1
Популярность устройств с напряжением питания 2.5 В может быть отчасти объяснена их способностью работать от двух щелочных элементов типа АА. На рис. 10.2 показаны характеристики щелочного элемента при различной величине нагрузки. (Приложение 2).