Литмир - Электронная Библиотека

На рис. 6.41 представлена концепция интерполяции. Исходный сигнал на рис. 6.41,а дискретизирован с частотой fs. На рис. 6.41,б частота дискретизации увеличена с коэффициентом L и добавлены нули для заполнения дополнительных отсчетов. Сигнал с добавленными нулями пропускают через фильтр интерполяции, который формирует дополнительные данные в точках, ранее заполненных нулями.

Иллюстрацию эффекта интерполяции в частотной области представляет рис. 6.42. Исходный сигнал, дискретизированный с частотой fs, показан на рис. 6.42,а. На рис. 6.42,б интерполированный сигнал имеет частоту дискретизации Lfs.

Примером использования интерполяции является ЦАП проигрывателя компакт-дисков, где данные генерируются с частотой 44,1 кГц. Если эти данные, спектр которых показан на рис. 6.42,а, поступают непосредственно на ЦАП, то требования, предъявляемые к ФНЧ на выходе ЦАП, чрезвычайно высоки. Обычно используется интерполирующий ЦАП с избыточной дискретизацией, дающий спектр, показанный на рис. 6.42,б. Обратите внимание на упрощение требований к аналоговому ФНЧ. Это важно для реализации фильтра с относительно линейной фазовой характеристикой и для сокращения стоимости фильтра.

Цифровая реализация интерполяции представлена на рис. 6.43.

Исходный сигнал х(n) сначала пропускают через экспандер частоты, который увеличивает частоту дискретизации с коэффициентом L и вставляет дополнительные нули. Затем данные проходят через интерполяционный фильтр, который сглаживает данные и интерполирует промежуточные значения между исходными точками данных. Эффективность этого фильтра можно улучшить, используя алгоритм фильтрации, в котором входные отсчеты с нулевым значением не требуют операций умножения с накоплением. Использование DSP-процессора, поддерживающего циклические буферы и циклы, реализуемые без дополнительных операций проверки условия завершения цикла, также улучшает эффективность реализации фильтров.

Интерполяторы и децпматоры могут совместно использоваться для выполнения преобразования частоты дискретизации с дробным коэффициентом, как показано на рис. 6.44.

Сначала входной сигнал х(n) интерполируется с коэффициентом L, а затем подвергается децимации с коэффициентом М. Результирующая выходная частота дискретизации равна Lfs/M. Чтобы сохранить максимально возможную полосу частот в сигнале, являющемся промежуточным результатом, интерполяция должна быть осуществлена перед децимацией. В противном случае часть полосы исходного сигнала была бы отфильтрована дециматором.

Характерным примером является преобразование частоты дискретизации проигрывателя компакт-дисков, которая равна 44,1 кГц, в частоту дискретизации, используемую при цифровой звукозаписи в формате DAT, которая равна 48,0 кГц. Коэффициент интерполяции при этом равен 160, а коэффициент децимации — 147. На практике, интерполяционный фильтр h'(k) и прореживающий фильтр h"(k) объединяются в один фильтр h(k).

Полная функция преобразования частоты дискретизации интегрирована в микросхемах семейства AD1890, AD1891, AD1892, и AD1893, которые работают на частотах от 8 кГц до 56 кГц (48 кГц для AD1892). Новая модель AD1896 работает на частотах до 196 кГц.

Адаптивные фильтры

В отличие от аналоговых фильтров, характеристики цифровых фильтров могут быть легко изменены путем изменения коэффициентов. Это делает цифровые фильтры привлекательными в коммуникационных приложениях, таких как адаптивный эквалайзинг, компенсация эха, подавление шума, анализ и синтез речи и т. д. Основная идея адаптивной фильтрации представлена на рис. 6.45. Ее цель состоит в том, чтобы так отфильтровать входной сигнал х(n), чтобы он соответствовал опорному сигналу d(n). Для генерации сигнала ошибки опорный сигнал d(n) вычитается из фильтруемого сигнала у(n). Сигнал ошибки управляет алгоритмом адаптации, который генерирует коэффициенты фильтра, минимизирующие сигнал ошибки. Наиболее популярными алгоритмами являются метод наименьших квадратов (least-mean-square) и рекурсивный метод наименьших квадратов (recursive-least-squares).

На рис. 6.46 показано применение адаптивного фильтра для компенсации эффектов амплитудных и фазовых искажений в канале передачи. Коэффициенты фильтра определяются в процессе передачи обучающей последовательности, представляющей известный образец данных. Алгоритм адаптации корректирует коэффициенты фильтра для получения соответствия между принимаемыми данными и данными обучающей последовательности. При связи через модем обучающая последовательность передается после установления первоначального соединения. После передачи обучающей последовательности коммутаторы переключаются в другую позицию, и начинается передача реальных данных. В течение этого времени генерируется сигнал ошибки, равный разности входных и выходных данных адаптивного фильтра.

Сжатие и синтез речи также подразумевают активное использование адаптивной фильтрации для уменьшения требуемых объемов передачи данных. Модель системы линейного кодирования с предсказанием (linear predictive coding, LPC), представленная на рис. 6.47 моделирует голосовой тракт, как импульсный генератор переменной частоты для гласных звуков и генератор случайного шума для согласных звуков. Сигнал от этих генераторов подается на цифровой фильтр, который, в свою очередь, генерирует реальный звуковой сигнал.

На рис. 6.48 дан пример применения линейного кодирования с предсказанием (LPC) в системе мобильной связи GSM. Входной голосовой сигнал оцифровывается 16-разрядным АЦП с частотой дискретизации 8 kSPS. Этим создается поток данных со скоростью 128 kBPS, слишком высокой для непосредственной передачи. DSP-процессор на передающем конце использует LPC-алгоритм для того, чтобы разбить передаваемый сигнал на набор коэффициентов фильтра и сигнал возбуждения. Такое кодирование проводится в интервал сигнала 20 мс, который считается оптимальной для большинства голосовых приложений. Реальная скорость передачи данных составляет всего 2,4 kBPS, что соответствует коэффициенту сжатия 53,3. Принимающий DSP-процессор использует LPC-модель для восстановления речи из принятых коэффициентов фильтра и сигнала возбуждения. В результате выходные данные поступают со скоростью 128 kBPS на 16-разрядный ЦАП для окончательного восстановления голосового сигнала.

Цифровые фильтры, используемые в приложениях линейного кодирования речи с предсказанием, могут быть либо КИХ-, либо БИХ-фильтрами, хотя БИХ-фильтры без нулей частотной характеристики используются наиболее широко. И КИХ- и БИХ-фильтры могут быть реализованы в виде лестничной структур, как показано на рис. 6.49 для рекурсивного фильтра без нулей частотной характеристики.

254
{"b":"870524","o":1}