Приготовим суповой концентрат
В широкогорлую колбу Эрленмейера на 250 мл поместим 50 г высушенных и измельченных кусочков говядины или творога. Затем нальем туда концентрированной соляной кислоты, чтобы весь белок полностью пропитался (около 30 мл). Содержимое колбы будем греть на кипящей водяной бане ровно час. За это время белок частично расщепится и образуется густой темно-коричневый бульон. При необходимости после нагревания в течение получаса можно добавить 15 мл вдвое разбавленной концентрированной соляной кислоты. Всего кислоты желательно взять ровно столько, сколько понадобится для гидролиза белка, потому что если ее будет слишком много, то после нейтрализации в бульоне окажется много соли.
Во второй колбе или в глиняном горшочке смешаем мелко нарезанные или растертые овощи и пряности, например 20 г сельдерея, 15 г репчатого лука или лука-порея, немного мускатного ореха и черного или красного перца, с 50 мл 10 %-ной соляной кислоты. Последнюю приготовим, разбавив 1 объем концентрированной кислоты 2,5 объемами воды. Эту смесь тоже станем греть на водяной бане, пока не появится коричневая окраска (обычно это происходит приблизительно через 20 минут). Затем обе смеси поместим в термостойкий стеклянный кристаллизатор или большую фарфоровую выпарительную чашку и тщательно перемешаем. Прильем 50 мл воды и нейтрализуем кислоту, постепенно добавляя гидрокарбонат натрия (питьевую соду). Делать это надо постепенно, малыми порциями, деревянной или пластмассовой ложкой. Смесь нужно все время тщательно перемешивать. При этом выделится много углекислого газа, а из соляной кислоты образуется хлорид натрия, а проще говоря — поваренная соль, которая и останется в бульоне. Благодаря соли бульон лучше сохраняется. Конец нейтрализации легко заметить по прекращению образования пены при добавлении очередной малой порции питьевой соды. Ее нужно добавить столько, чтобы готовая смесь обнаруживала очень слабокислую реакцию при испытании лакмусовой бумажкой.
Конечно, полученный концентрат можно использовать для приготовления супа только в том случае, если для гидролиза белка была взята совершенно чистая соляная кислота, т. е. чистая для анализа или используемая для медицинских целей (Последнюю можно приобрести в аптеке. — Прим. перев.), потому что техническая кислота может содержать примеси ядовитых соединений мышьяка (!). Качество и вкус этого супа могут оказаться разными — в зависимости от того, из каких продуктов мы его приготовили. Однако при совершенно точном соблюдении приведенной прописи его вполне можно употреблять в пищу. В промышленности в пищевые концентраты супов вводят белковые гидролизаты, полученные аналогичным образом из пшеничных отрубей (Часто для этого используют другие белки, в основном растительного происхождения, — из отходов переработки семян масличных культур, а также белок молока — казеин. Получаемые гидролизаты обладают приятным мясным или грибным вкусом. Можно даже получить гидролизат, не уступающий по вкусу куриному бульону. — Прим. перев.).
В последние годы в качестве добавки, улучшающей вкус пищи, а также укрепляющего средства стали применять одну из аминокислот — глутеминовую, которая в изобилии содержится в глобулинах. Она используется в свободном состоянии или в виде натриевой соли — глутамината натрия. Добавим к нашему концентрату немного чистого глутамината натрия или самой глутаминовой кислоты, таблетки которой можно купить в аптеке. Благодаря этому концентрат приобретет более сильный вкус. Сама по себе глутаминовая кислота имеет лишь слабый вкус, но она возбуждает вкусовые рецепторы и таким образом усиливает характерный вкус пищи.
ЧТО ВО ЧТО ПРЕВРАЩАЕТСЯ?
Представляете ли вы, как выглядит гигантский химический завод? Огромные трубы выбрасывают в воздух клубы черного, ядовито-желтого или бурого дыма. Своеобразные очертания химическому предприятию придают огромные ректификационные колонны, холодильные установки, газгольдеры и крупные производственные здания. Если мы познакомимся с заводом ближе, нас увлечет напряженный ритм его непрерывной работы. Мы остановимся перед огромными котлами, пройдем вдоль трубопроводов, услышим шум компрессоров и резкий, вначале пугающий звук, с которым пар вырывается из предохранительных клапанов. Однако есть и такие химические заводы, которые не чадят и не шумят, где нет никаких аппаратов и где изо дня в день старые цеха уничтожаются, уступая место новым. Такими химическими предприятиями являются живые организмы.
ОБМЕН ВЕЩЕСТВ
"Сгорание" пищи в организме осуществляется в клетках. Требуемый для этого кислород обеспечивается за счет дыхания и у многих живых организмов переносится особой жидкостью — кровью. У высших животных кровь состоит из плазмы и взвешенных в ней красных и белых кровяных телец. Красные кровяные тельца эритроциты, придающие крови ее окраску, состоят на 79 % из сложного белка гемоглобина. В состав этого белка входит красный краситель ген, присоединенный к бесцветному белку глобину, из группы глобулинов. Состав гемоглобина у различных животных сильно различается, но строение гема всегда одинаково. Из гема можно получить другое соединение — гемин. Анатому Тейхману впервые удалось выделить кристаллы гемина и, тем самым, найти надежный метод распознавания крови. Эта реакция позволяет обнаружить малейшие следы крови и успешно применяется в судебной экспертизе при расследовании преступлений.
Обнаружение геминана с помощью реакции Тейхмана
Стеклянной палочкой нанесем на предметное стекло капельку крови, размажем ее и высушим на воздухе. Затем нанесем на это стекло, тонким слоем измельченную до мельчайшего порошка поваренную соль, добавим 1–2 капли ледяной уксусной кислоты (в крайнем случае можно взять вместо нее уксусную кислоту высокой концентрации) и наложим сверху покровное стекло. Нагреем предметное стекло слабым (!) пламенем до образования первых пузырьков (ледяная уксусная кислота кипит при 118,1 °C). Затем при осторожном нагревании полностью выпарим уксусную кислоту. После охлаждения рассмотрим пробу под микроскопом с увеличением в 300 раз. Мы увидим красно-коричневые ромбические таблички (призмы). Если такие кристаллы не образовались, то снова нанесем уксусную кислоту на границу соприкосновения стекол, дадим ей просочиться внутрь и снова нагреем предметное стекло.
Эта реакция позволяет обнаружить следы высохшей крови и на ткани. Для этого обработаем такое пятно водой, содержащей углекислый газ, например минеральной водой, профильтруем вытяжку, фильтрат упарим на предметном стекле и далее обработаем пробу так же, как указано выше. Впервые синтезировать и расщепить гемин удалось немецкому химику Гансу Фишеру в 1928 г. Сравнение формулы гемина (или гема) с формулой зеленого пигмента растений хлорофилла свидетельствует об удивительном сходстве этих соединений:
Обнаружение крови с использованием бензидина
Бензидиновая проба тоже позволяет обнаружить незначительное количество крови. Вначале приготовим реактив. Для этого 0,5 г бензидина растворим в 10 мл концентрированной уксусной кислоты и разбавим раствор водой до 100 мл. К 1 мл полученного раствора прильем 3 мл 3 %-ного раствора пероксида (перекиси) водорода и тотчас смешаем с очень разбавленной водной вытяжкой крови. Мы увидим зеленое окрашивание, которое быстро переходит в синее.
В 5 л крови, содержащейся в организме человека, находится 25 биллионов красных кровяных телец, а в них — от 600 до 800 г гемоглобина. К 1 г чистого гемоглобина может присоединиться около 1,3 мл кислорода. Однако к гемоглобину может присоединяться не только кислород. Его сродство к оксиду углерода (угарному газу) в 425 раз больше, чем к кислороду. Образование более прочного соединения оксида углерода с гемоглобином приводит к тому, что кровь теряет способность переносить кислород, и отравленный человек задыхается. Поэтому будем осторожны с бытовым газом и другими газами, содержащими оксид углерода!